Supplementary homework problems, due May 20, 2009

1. Suppose that for each prime p, we have an integer k_{p} with $0 \leq k_{p}<p, k_{p}=O(1)$, and such that for some real number $c>0$,

$$
\sum_{p \leq x} \frac{k_{p} \log p}{p}=c \log x+O(1)
$$

Prove that there is some number $C>0$ such that

$$
\prod_{p \leq x}\left(1-k_{p} / p\right) \sim C /(\log x)^{c} \text { as } x \rightarrow \infty
$$

2. Suppose $k_{p}=2$ if p is $1 \bmod 4, k_{p}=0$ if p is $3 \bmod 4$, and $k_{2}=1$. Show that this choice of numbers k_{p} satisfies the above problem with $c=1$. What is the relevance of this exercise to primes of the form $n^{2}+1$?
