Supplementary homework problems, due April 20, 2009

1. Let \mathcal{P} be a set of prime numbers. Prove that

$$
\sum_{p \in \mathcal{P}} \frac{1}{p}=\infty \text { if and only if } \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)=0
$$

2. Prove that if \mathcal{P} is a set of primes with an infinite reciprocal sum, then the set of integers not divisible by any member of \mathcal{P} has asymptotic density 0 .
3. Let \mathcal{S} be the set of integers which can be expressed as the sum of two coprime squares, so that $\mathcal{S}=\{1,2,5,10,13,17,25, \ldots\}$. Look up (or recall) the theorem which classifies which integers are in \mathcal{S} and use this together with the results in Section 2 of Chapter 4 and the exercise above to show that \mathcal{S} has asymptotic density 0 .
