Math 105: Introduction to Modular Forms
Homework 2: Due Wednesday, May 7

1. (a) Prove that $\{I\} \cup\left\{T^{-j} S\right\}_{j=0}^{p-1}$ is a complete set of left coset representatives for $\Gamma_{0}(p)$ in Γ.
(b) Draw a fundamental domain for $\Gamma_{0}(2)$.
2. Let $f \in M_{k}\left(\Gamma_{0}(N), \chi\right)$ and set $W_{N}:=\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$. The map $\left.f \mapsto f\right|_{k} W_{N}$ is called the Fricke involution.
(a) Prove that $\left.f\right|_{k} W_{N} \in M_{k}\left(\Gamma_{0}(N), \bar{\chi}\right)$, and that the square of the Fricke involution is the $\operatorname{map}(-1)^{k}$ on $M_{k}\left(\Gamma_{0}(N), \chi\right)$. Show that the Fricke involution is an isomorphism of vector spaces from $M_{k}\left(\Gamma_{0}(N), \chi\right)$ to $M_{k}\left(\Gamma_{0}(N), \bar{\chi}\right)$.
(b) If $\chi=\bar{\chi}$ (that is if $\chi(d)= \pm 1$), then show that

$$
M_{k}\left(\Gamma_{0}(N), \chi\right)=M_{k}^{+}\left(\Gamma_{0}(N), \chi\right) \oplus M_{k}^{-}\left(\Gamma_{0}(N), \chi\right)
$$

where $M_{k}^{ \pm}\left(\Gamma_{0}(N), \chi\right)=\left\{f \in M_{k}\left(\Gamma_{0}(N), \chi\right):\left.f\right|_{k} W_{N}= \pm i^{-k} f\right\}$.
3. (a) For $\delta \in \mathbb{N}$, show that if $\gamma \in \Gamma$ then $\left(\begin{array}{ll}\delta & 0 \\ 0 & 1\end{array}\right) \gamma=\gamma^{\prime}\left(\begin{array}{cc}A & B \\ 0 & D\end{array}\right)$ for some $\gamma^{\prime} \in \Gamma$ and integers A, B and D, with A and D positive.
(b) For $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}^{+}(\mathbb{Q})$, define

$$
\left.\eta(z)\right|_{\frac{1}{2}} \alpha:=(\operatorname{det} \alpha)^{\frac{1}{4}}(c z+d)^{-\frac{1}{2}} \eta(\alpha z),
$$

where we take the branch of the square root having nonnegative real part. Using the fact that for $\gamma \in \Gamma,\left.\eta(z)\right|_{\frac{1}{2}} \gamma=\epsilon \eta(z)$ for some root of unity ϵ, prove that the order of vanishing of an eta-quotient $f(z)=\prod_{\delta \mid N} \eta^{r_{\delta}}(\delta z)$ at a cusp s is

$$
\operatorname{ord}_{s} f=\frac{N}{24\left(c^{2}, N\right)} \sum_{\delta \mid N} \frac{(c, \delta)^{2}}{\delta} r_{\delta} .
$$

4. (a) Show that $g(z)=\eta^{3}(z) \eta^{3}(7 z) \in S_{3}\left(\Gamma_{0}(7),(\dot{\overline{7}})\right)$.
(b) Prove that if f is a nonzero element of $S_{3}\left(\Gamma_{0}(7),(\dot{\overline{7}})\right)$, then it is a constant multiple of $g(z)$.
