MATH 105: HW #4

- (1) Let T_n denote the *n*th triangular number: $T_n = n(n+1)/2$. It is called this since it is the sum of 1, 2, ..., n, which can be thought of as T_n pebbles arranged in a triangle, with *j* stones on level *j*. Use the version of Hypothesis H given in class to show that T_n+1 is prime infinitely often. (Note that $f(x) = x(x+1)/2 \notin \mathbb{Z}[x]$. Hint: Consider separately *n* odd or *n* even.)
- (2) Use the version of Hypothesis H given in class to show that if $f(x) \in \mathbb{Q}[x]$ has the properties
 - (a) For each $n \in \mathbb{Z}$, we have $f(n) \in \mathbb{Z}$,
 - (b) f is irreducible,
 - (c) the leading coefficient of f is positive, and
 - (d) for each prime p, there is some integer n with $p \nmid f(n)$,

then there are infinitely many integers n with f(n) prime.

(3) Also do problems 31 and 32 in Chapter 1 of the book.