MATH 105: HW \#4

(1) Let T_{n} denote the nth triangular number: $T_{n}=n(n+1) / 2$. It is called this since it is the sum of $1,2, \ldots, n$, which can be thought of as T_{n} pebbles arranged in a triangle, with j stones on level j. Use the version of Hypothesis H given in class to show that $T_{n}+1$ is prime infinitely often. (Note that $f(x)=x(x+1) / 2 \notin \mathbb{Z}[x]$. Hint: Consider separately n odd or n even.)
(2) Use the version of Hypothesis H given in class to show that if $f(x) \in \mathbb{Q}[x]$ has the properties
(a) For each $n \in \mathbb{Z}$, we have $f(n) \in \mathbb{Z}$,
(b) f is irreducible,
(c) the leading coefficient of f is positive, and
(d) for each prime p, there is some integer n with $p \nmid f(n)$, then there are infinitely many integers n with $f(n)$ prime.
(3) Also do problems 31 and 32 in Chapter 1 of the book.

