MATH 105: HW \#3

(1) If p is a prime and m is a positive integer with $p \nmid m$, show that

$$
\Phi_{m p}(x)=\frac{\Phi_{m}\left(x^{p}\right)}{\Phi_{m}(x)}
$$

(2) If p is a prime and m is a positive integer with $p \mid m$, show that

$$
\Phi_{m p}(x)=\Phi_{m}\left(x^{p}\right) .
$$

(3) If p is a prime, n is a positive integer with $p \mid n$, and k is an integer with $p \mid \Phi_{n}(k)$, then writing $n=m p^{j}$, where $p \nmid m$, we have that the order of k in $(\mathbf{Z} / p \mathbf{Z})^{\times}$is m.
(4) If n, k are integers with $n>0$, then $\operatorname{gcd}\left(n, \Phi_{n}(k)\right)$ is not divisible by 2 different primes.
(5) If n, k are integers with $n>0$ and p is a prime such that the order of k in $(\mathbf{Z} / p \mathbf{Z})^{\times}$is n, then $p \mid \Phi_{n p^{j}}(k)$ for each $j=$ $0,1,2, \ldots$.
(6) Let p_{n} denote the nth prime and let $d_{n}=p_{n+1}-p_{n}$. Then $d_{1}=1$ and all of the other d_{n} 's are even. Assuming the prime k-tuples conjecture, prove that each positive even integer occurs infinitely often in the sequence $\left(d_{n}\right)_{n \geq 1}$.

