Math 105, Fall 2010, HW5

1. Find the order of $(0,3)$ in the elliptic curve group $E_{-1,2}\left(\mathbb{F}_{7}\right)$. What is the index of the subgroup generated by $(0,3)$ in the full elliptic curve group?
2. Show that if n is an odd number with exactly k distinct prime factors, then squaring is a $2^{k}: 1$ homomorphism on $(\mathbb{Z} / n \mathbb{Z})^{*}$.
3. Suppose n is an odd number and write $\varphi(n)$ as $2^{u} v$ where v is odd. We know from Euler's theorem that for any integer a coprime to n that $a^{2^{u} v} \equiv 1(\bmod n)$. Let N denote the number of residues $a(\bmod n)$ where either

$$
a^{v} \equiv 1 \quad(\bmod n) \quad \text { or } \quad a^{2^{i} v} \equiv-1 \quad(\bmod n)
$$

for some $i<u$. Show that if n is divisible by at least 2 distinct primes, then $N<n / 2$. (Hint: Pattern your proof on a similar result connected with strong pseudoprimes.)
4. Given n and $\varphi(n)$, describe a polynomial-time random algorithm to factor n. (Hint: Use the previous problem.)
5. In the RSA cryptosystem, there is a public modulus n which is the product of two primes p, q, which are not public. An encryption exponent E is a random number coprime to $\varphi(n)$, and it is public. A decryption exponent D is an integer with $D E \equiv 1(\bmod \varphi(n))$, and it is secret. It has the property that for every integer M, we have

$$
M^{E D} \equiv M \quad(\bmod n)
$$

Anyone who knows p, q can easily find D since it just involves finding the inverse of E modulo $(p-1)(q-1)$. Show conversely, if one has any integer D that satisfies the above displayed congruence for all M, then one can easily factor n. (Hint: Use an analog of the previous problem.)

