Math 105, Fall 2010, HW4

1. Suppose $n=2^{j} k+1$, where $j \geq 2,2^{j}>k$, and $3 \nmid k$. Show that n is prime if and only if $3^{(n-1) / 2} \equiv-1(\bmod n)$.
2. Prove the following generalization of the theorem of the Brillhart, Lehmer, Selfridge " $n-1$ " theorem: Let $n>1$ be an integer, suppose that $F \mid n-1$ with $F>\sqrt{n}$, and suppose that for each prime $q \mid F$ there is an integer a_{q} such that

$$
a_{q}^{n-1} \equiv 1 \quad(\bmod n), \quad \operatorname{gcd}\left(a_{q}^{(n-1) / q}-1, n\right)=1
$$

Then n is prime.
3. Let $m>1$ be an integer and let $n=2^{2^{m}}-2^{2^{m-1}}+1$. Prove that n is prime if and only if $7^{(n-1) / 2} \equiv-1(\bmod n)$.
4. Let f_{n} be the nth Fibonacci number. We've learned that if p is prime, then $f_{p-(p / 5)} \equiv 0$ $(\bmod p)$. Say a composite integer n is a "Fibonacci pseudoprime" if $f_{n-(n / 5)} \equiv 0(\bmod n)$. Using standard properties of the Fibonacci sequence, show that 323 is a Fibonacci pseudoprime.
5. For a positive integer n let $F(n)$ be the number of integers $a \in[1, n]$ with $a^{n-1} \equiv 1$ $(\bmod n)$. Prove that

$$
F(n)=\prod_{p \mid n} \operatorname{gcd}(p-1, n-1)
$$

where the product is over primes p that divide n. (A Jeopardy answer: What is the CRT?)
6. We know from algebra that if p is a prime number then $(\mathbb{Z} / p \mathbb{Z})[x]$ is a principal ideal ring. Show the converse. That is, if $n>1$ is an integer and $(\mathbb{Z} / n \mathbb{Z})[x]$ is a principal ideal ring, then n is prime.

