Math 105, Fall 2010, HW3

1. Show that if $p>3$ is prime, then $n=\left(4^{p}-1\right) / 3$ is a pseudoprime (base 2). (That is, n is composite and $2^{n-1} \equiv 1(\bmod n)$.)
2. More generally show that if $a>1$, then $\left(a^{2 p}-1\right) /\left(a^{2}-1\right)$ is a base a pseudoprime for every odd prime p not dividing $a^{2}-1$.
3. Show that $n=\left(4^{p}+1\right) / 5$ is a base 2 strong pseudoprime for every prime $p>5$. (That is, n is composite and if $n-1=2^{j} k$, with k odd, then either $2^{k} \equiv 1(\bmod n)$ or $2^{2^{i} k} \equiv-1$ $(\bmod n)$ for some $i<j$.) (Hint: The polynomial $4 z^{4}+1$ is reducible in $\mathbb{Z}[x]$.)
4. We saw that if n is squarefree and $p-1 \mid n-1$ for each prime $p \mid n$, then $a^{n-1} \equiv 1$ $(\bmod n)$ for every integer a coprime to n. Prove the converse.
5. Show that if $a^{n-1} \equiv 1(\bmod n)$ for every a coprime to n, then $a^{n} \equiv a(\bmod n)$ for every integer a.
6. Show that if $a^{n-1} \equiv 1(\bmod n)$ for every a coprime to n, and n is composite, then n has at least 3 prime factors.
