Math 105, Fall 2010, HW3

- 1. Show that if p > 3 is prime, then $n = (4^p 1)/3$ is a pseudoprime (base 2). (That is, n is composite and $2^{n-1} \equiv 1 \pmod{n}$.)
- 2. More generally show that if a > 1, then $(a^{2p} 1)/(a^2 1)$ is a base *a* pseudoprime for every odd prime *p* not dividing $a^2 1$.
- 3. Show that $n = (4^p + 1)/5$ is a base 2 strong pseudoprime for every prime p > 5. (That is, n is composite and if $n 1 = 2^j k$, with k odd, then either $2^k \equiv 1 \pmod{n}$ or $2^{2^i k} \equiv -1 \pmod{n}$ for some i < j.) (Hint: The polynomial $4z^4 + 1$ is reducible in $\mathbb{Z}[x]$.)
- 4. We saw that if n is squarefree and $p-1 \mid n-1$ for each prime $p \mid n$, then $a^{n-1} \equiv 1 \pmod{n}$ for every integer a coprime to n. Prove the converse.
- 5. Show that if $a^{n-1} \equiv 1 \pmod{n}$ for every a coprime to n, then $a^n \equiv a \pmod{n}$ for every integer a.
- 6. Show that if $a^{n-1} \equiv 1 \pmod{n}$ for every a coprime to n, and n is composite, then n has at least 3 prime factors.