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Lecture 25

Chapter 5 - Local behavior

Theorem 1 Suppose Ω is a convex region and f ∈ H(Ω) has �nitely many zeroes
Z(f) = {a1, . . . , an} in Ω with each zero repeated according to its multiplicity. Let γ be a closed
path in Ω such that γ

∗ ∩ Z(f) = ∅. Then
n

∑
j=1

Indγ(aj) =
1

2iπ
∫
γ

f
′(w)
f(w) dw

Picture

proof of Theorem 1 By induction, ∃h ∈ H(Ω) such that f(z) = (z − a1)⋯(z − an)h(z)
and h(z) ≠ 0 for z ∈ Ω:

Furthermore, by induction:

f
′(z)
f(z) =

1
z − a1

+⋯+
1

z − an
+
h
′(z)
h(z)

proof

Since h
′

h
∈ H(Ω) as h(z) ≠ 0 and Ω is convex, ∫γ

h
′(z)
h(z) dz = 0 and our statement follows from

the de�nitions. □
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Corollary 2 If γ = ∂D is a positively oriented circle, then Nf =
1

2iπ
∫γ

f
′(z)
f(z) dz is the number

of zeroes of f in D.

Picture

Let Ω be a region, f ∈ H(Ω) and Dr(a) ⊂ Ω. Then ∃r′ > r such that Dr′(a) ⊂ Ω.

Note that Dr′(a) is convex. If f is a non-constant function on Dr′(a), then gw = f − w has

�nitely many zeros in Dr′(a), {a1(w), . . . , an(w)} ⊂ Dr′(a).

Dr′(a) is convex. Let γ = ∂Dr(a) and Γ = f ◦ γ.

IndΓ(w) =

= Ngw = # of times that f(z) = w in Dr(a) with multiplicities.

Note 3 If w1, w2 are in the same connected component V of C \Γ
∗
, then

IndΓ(w1) = IndΓ(w2) so #{z ∈ V ∣ f(z) = w1} = #{z ∈ V ∣ f(z) = w2}

and f assumes the values w1, w2 equally often inside γ
∗
.
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Corollary 4 Suppose Ω is a domain and f ∈ H(Ω). Assume g(z) = f(z) − w0 has a zero

of order m at z0. Then, ∃ε0 > 0 such that ∀0 < ε ≤ ε0, ∃δ = δ(ε) > 0 such that

a ∈ Dδ(w0) ⇒ the equation f(z) = a has exactly m solutions in Dε(z0)
up to multiplicity.
Furthermore for a ≠ w0 and ε small enough, all m solutions are distinct.

Picture

proof 1.) There are m solutions: Choose ε0 > 0 such that Dε0(z0) ⊂ Ω and z0 is the

only solution to g(z) = f(z) − w0 in Dε0(z0). (Zeros are isolated)
Fix 0 < ε < ε0 and γ(t) = z0 + εe

it
, t ∈ [0, 2π]. Let Γ = f ◦ γ. Note w0 ∉ Γ

∗
by our choice of ε0.

Choose δ > 0 such that
Dδ(w0) ∩ Γ

∗
= ∅.

Then Dδ(w0) lies in a single component of C \Γ
∗
. Thus, by Note 3 f assumes all values

w ∈ Dδ(w0) equally often. Since f(z) = w0 has m solution, so does f(z) = w for all w ∈ Dδ(w0).

2.) For a ≠ w0 there are m distinct solutions:

Claim: ∃0 < ε1 ≤ ε such that z ∈ D
′
ε1(z0) ⇒ f

′(z) ≠ 0.

If f
′(z) ≠ 0 and f(z) = a, then f(z) − a has an isolated zero of order 1 which means that

f(z) ≠ a in a small disk around z. Hence if we prove the claim, the solutions of f(z) = a must
be distinct.
proof of Claim: As g has a zero of order m in z0 we get for the power series

g(z) = f(z) − w0 = and f
′(z) = .

Case 1 f
′(z0) = g′(z0) ≠ 0. Then

Case 2 f
′(z0) = g′(z0) = 0. As f

′
is holomorphic, the zeros are isolated, so there is a punctured

disk D
′
ε1(z0), □
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Open Mapping Theorem Suppose Ω is a region and f ∈ H(Ω). Then f(Ω) is either a
point or a region.

proof If f is constant, then f(Ω) is a point. Otherwise, let w0 ∈ f(Ω), say f(z0) = w0.
Then g(z) = f(z) − w0 has a zero of �nite order at z0.
With ε0 and δ as in the proof of the corollary we have

Dδ(w0) ⊂ f(Dε0(z0)) ⊂ f(Ω)

hence f(Ω) is open. It is clearly connected, hence a region. □

Maximum Principle Suppose Ω is a region and f ∈ H(Ω) is non-constant (f ≠ c). Then
∣f∣ has no local maximum in Ω.

proof Since Ω is a region f is non-constant on any disk in Ω. Therefore it su�ces to prove
the result for the case where Ω = D is a disk.
Let w0 be in f(D). Then f(D) is a region by the Open Mapping Theorem. Hence there is
δ > 0, such that

We use polar coordinates. If w0 = r0e
i⋅ϕ0 , let w = (r0 +

δ
2
)ei⋅ϕ0

∈ Dδ(w0). Then

∣w∣ =

Hence ∣f∣ can not have a maximum in D. □


