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Lecture 25 &
Chapter 5 - Local behavior

Theorem 1 Suppose 2 is a convex region and f € H(2) has finitely many zeroes
Z(f)=A{a1,...,a,} in Q with each zero repeated according to its multiplicity. Let v be a closed
path in © such that v* N Z(f) = @. Then

S L[ fw)
;Indv(aj) = 5 J'A/ o) dw

Picture

proof of Theorem 1 By induction, 3h € H(Q2) such that f(z2) = (z — aq)--(z — a,)h(2)
and h(z) # 0 for z €

Furthermore, by induction:

fiz) 1 1 H(2)
(o) z-a T Tma, T

proof

Since % € H(2) as h(z) # 0 and Q is convex, jv Z((ZZ)) dz = 0 and our statement follows from

the definitions. O
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Corollary 2 If v = 9D is a positively oriented circle, then Ny = ﬁ - %dz is the number

of zeroes of f in D.

Picture

Let Q be a region, f € H(Q) and D, (a) € Q. Then 3r' > r such that D, (a) C Q.

Note that D,/(a) is convex. If f is a non-constant function on D,/(a), then has

finitely many zeros in D,i(a), {a1(w), - - -+ @nw)} € Dyi(a).
D,i(a) is convex. Let v = 9D,(a) and " = f o ~.

Indr(w) =

=|N,, = # of times that f(z) = w in D, (a) with multiplicities.

Note 3 If wy,wy are in the same connected component V of C \F*, then

Indp(w;) = Indp(wy) so #{z €V | f(z) =wi} = #{z € V| f(2) = wa}

and f assumes the values wy, wy equally often inside ™.
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Corollary 4 Suppose € is a domain and f € H(2). Assume ’g(z) = f(2z) —wy ‘ has a zero
of order m at zy. Then, gy > 0 such that V0 < & < gy, 36 = d(g) > 0 such that

a € Ds(wg) = the equation f(2) = a has exactly m solutions in D,(zg)

up to multiplicity.
Furthermore for a # wg and e small enough, all m solutions are distinct.

Picture

proof 1.) There are m solutions: Choose gy > 0 such that D, (zp) C Q and zj is the
only solution to g(z) = f(z) —wp in D, (z0). (Zeros are isolated)
Fix 0 < € < g9 and (t) = 29 +ce’, t € [0,27]. Let T' = f o~. Note wp ¢ I'* by our choice of &q.
Choose § > 0 such that
Ds(wg) N I =g.

Then Dgs(wg) lies in a single component of C\I'*. Thus, by Note 3 f assumes all values
w € Dgs(wq) equally often. Since f(z) = wg has m solution, so does f(z) = w for all w € Ds(wy).

2.) For a # wy there are m distinct solutions:
Claim: 30 < g1 < ¢ such that z € Dél(zo) = f'(z) 0.

If f'(z) # 0 and f(z) = a, then f(z) — a has an isolated zero of order 1 which means that
f(2) # a in a small disk around z. Hence if we prove the claim, the solutions of f(z) = a must
be distinct.

proof of Claim: As g has a zero of order m in zy we get for the power series

9(2) = f(2) —wp = and f'(2) =

Case 1 f'(29) = ¢'(20) # 0. Then
Case 2 f'(29) = ¢'(29) = 0. As f' is holomorphic, the zeros are isolated, so there is a punctured
disk DL, (2), O
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Open Mapping Theorem Suppose 2 is a region and f € H(2). Then f() is either a
point or a region.

proof If f is constant, then f(f2) is a point. Otherwise, let wy € f(Q), say f(z9) = wp.
Then g(z) = f(2z) — wp has a zero of finite order at z.
With ¢y and § as in the proof of the corollary we have

Ds(wo) € f(De,(20)) € f(2)

hence f(Q) is open. It is clearly connected, hence a region. O

Maximum Principle Suppose  is a region and f € H(2) is non-constant (f # ¢). Then
| f| has no local maximum in §.

proof Since €2 is a region f is non-constant on any disk in €2. Therefore it suffices to prove
the result for the case where 2 = D is a disk.

Let wg be in f(D). Then f(D) is a region by the Open Mapping Theorem. Hence there is
0 > 0, such that

We use polar coordinates. If wy = roe’ #°, let w = (rg + g)ew)0 € Ds(wp). Then
lw| =

Hence | f| can not have a maximum in D. |




