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Lecture 1

Part I - MEASURE THEORY

Chapter 1 - ¢ algebras and measures

Outline: To give a subset of a set X a weight or measure we must restrict ourselves to
"good" subsets of X or elements of P(X). Such a collection M C P(X) is called a o algebra.

Chapter 1.1 - Review - Riemann integral

Outline: 1.) A function f is Riemann integrable if it can be "approximated" by step
functions. These functions are defined by subdividing the domain.
2.) The Riemann integral does not have good convergence properties. We should look for a
better way of defining integration.

Definition 1 (Partitions) A partition or subdivision P of an interval [a,b] is a finite
sequence of points P = {(tx)k=0,..n}, such that
a=tg<ti1 <ta<...<tp_1<t,=0

e We call an interval (f,tr+1) a subinterval of the partition P. We call the width wp of
the largest subinterval

wp = |P|| = max{|ty4+1 —tg|, where k€ {0,1,2,...,n—1}} the mesh or norm of P.

e If for two partitions Py, Py of [a, b] we have that P; C Py. Then P is called a refinement
of ,Pl-

Example Draw a partition P of the interval [0,10] and estimate its norm. Then find a
refinement of P. Given two partitions P; and Ps is there always a common refinement?
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To define the Riemann integral we first create step functions based on a partition P that give
an upper and lower bound on the area under the graph of f.

Defintion 2 (upper and lower Riemann sums) Let f : [a,b] — R be a bounded func-
tion and P = {(tx)k=o0,.n} be a partition of [a, b],i.e.

a=tg<ti <to<...<tph_1<t,=0b
We define two step functions fU, fr, : [a,b] — R associated to f and P in the following way

My = sup{f(z),x € (tp—1,t)} and fU(z) =My forall =€ (tp_1,ts)
mr = inf{f(z),x € (tk_1,tx)} and fr(z)=myg forall =z € (tx_1,1tx).

If the partition P is important we will write fg for fU and frp for fr.
Finally the Riemann sums of f with respect to P are the integrals

n b
Uuif,P) = ZMk Aty — ti—1) = / fY(z) dz (upper sum) and
k=1 a

n b
LU P) = ka-(tk—tk_l):/ fu(x) dz (lower sum)
k=1 a

Note If P = {(tx)r=0,.n} is a partition of [a,b], then we are not interested in the values of
the step function f on the points (t;)k=0,.n of the partition. This is because for integration it
does not matter which values the the function takes on this finite number of points.

Example Sketch a continuous function f in the interval [0, 10]. Using your partition P from the
previous example, sketch fU and f and estimate the integrals U(f, P) and L(f,P).

Using this approximation with step functions we can try to find the "best approximating"
fY and fr, by varying and refining the partition.
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Definition 3 (Upper and lower Riemann integral) Let f : [a,b] — R be a bounded
function. The Riemann integrals of f are

b b
R/ f(z) de = inf{U(f,P) = / f8(z) dz, P partition of [a,b]} (upper integral)
b b
R/ f(z) de =sup{L(f,P) = / frp(x), P partition of [a,b]} (lower integral) .

Finally we say that a function f is integrable if the upper and lower Riemann integral co-
incide. This means that the function can be approximated by greater and lower step functions
such that the corresponding integrals exists and are equal.

Defintion 4 (Riemann integrable functions) Let f : [a,b] — R be a bounded function.
Then f is (Riemann) integrable on the interval [a, b] if

R/abf(x) do =L = R/abf(:c) da.

In this case we write L = Rf; f(z) dz.
The set of Riemann integrable functions on [a, b] is denoted by R([a, b]).
Note: For any partition P of [a,b] we have that

/ab fo(z) do < /abe(a:) dr hence R/Qbf(gc) dz < R/abf(x) da.

Examples 5

a) (infinite comb) Let f : [0,1] — R be the function, such that

{4 0 22518

Then f integrable on [0, 1].
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b) (popcorn function) Let ¢ : [0,1) — R be the function, such that

s ={ 1 i TG

. T = % € Q,g in lowest term

Sketch the popcorn function for ¢ = 2, 3,4, 5.

Then g integrable on [0, 1].
Definition 6 A subset S C R has measure zero if for all ¢ > 0 there are open intervals
(I,(€))new such that
a) S C Upen In(e).
b) > .en fIn(€)) <€, where £((a,b)) = b — a.

We would like to define integration in a way such that the functions in these two previous
examples have integral zero. More generally we would like to have that countable subsets of R
have measure zero and define integration such that the integral over these sets is zero.

Example 7 Let C be a countable subset of R. Then C' has measure zero.

proof Idea: We put "small enough" intervals around every point of C.
Fix € > 0. Since C is countable, C' = (¢;)nen = {c1,¢2,c3,...}. We set

Note 8 The countable union of countable sets has measure zero (see HW 1).
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Why should we not settle for the Riemann integral?

e The integral over countable subsets of R is not always zero.

e The definition is restricted to bounded functions and domains.
e R([a,b]) does not have good convergence properties.

Example 9 Consider a sequence of functions (f,)nen, such that f,, : [0,1] — R, such that
for all n € IN
fn continuous and 0< fy(x) <1 forall z € 0,1]

If limy, 00 frn(x) = 0 for all x € [0,1]. Is it true that
1

lim R | fo(z)dx=0 7
0

n—o0

This is in fact true, but very hard to prove. However this will be a simple result in our new
integration method using measure theory.

From Riemann to Lebesque

Idea: We define integration the other way round. We look at the set I, such that f(I) in
an interval [y, yo] on the y-axis. Then

mem(@) < [ £ <ueem)

I

Refining the intervals now on the y-axis we get an estimate of the integral. Indeed we can define
integration this way. However to this end we have to define the measure m properly. If I is an

interval, we would have m(I) = ¢(I).

Example
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In general we would like to have a measure m : P(R) — R, such that

a) m(0) =0

b) m(I) = ¢(I) for an interval I C R.

c) m(Wply Ak) = 252 m(Ag)-
(

d) m(A+x) =m(A) for all x € R (m is invariant under translation).

3

Remark 1.) Unfortunately this is not possible, as P(R) is too complex. This is a conse-
quence of Vitali’s Theorem.
2.) In ¢) we want countable additivity. If we have additivity for finite sets only, then we can not
pass to limits. If we take uncountable additivity, then if we have for p € R that m(p) = 0, then
m(R) =0 (using d)).

Chapter 1.2 - ¢ algebras

Outline To define a measure we have to use the "right" subsets of X.

Definition 1 (o algebra) Let X be a set, a collection M C P(X) of subsets of X is called
a o algebra if

a) X € M.
b) Ae M= A°= X\A € M (M is closed under complements).
¢) (Ap)k=1,..00 C M = Ury Ax € M (M is closed under countable unions).

In this case (X, M) is called a measurable space.




