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Lecture 17

Chapter 2.8. - The Radon-Nikodym Theorem

Outline Let (X,M, µ) be a measure space. We show that under certain simple conditions
we have for another measure ν � µ and E ∈M

ν(E) =

∫
E
f dµ, where f : X → [0,∞) measurable.

In a sense this means that measuring and integrating are the same thing.

Picture

We recall
Ch. 1.6, Theorem 10 Let (X,M, µ) be a measure space and f : X → [0,∞) be a measurable
function. Then there is a measure µf on X given by

µf :M→ [0,∞]

E 7→ µf (E) =

∫
E
fdµ

Moreover, if g is measurable on X then∫
X
g dµf =

∫
X
gf dµ.

De�nition 1 Let µ and ν be measures on a measurable set (X,M). We say that ν is

absolutely continuous with respect to µ and we write ν � µ if µ(E) = 0⇒ ν(E) = 0 .

Note 2 In Chapter 1.6. we have also shown that µf � µ.

Example If f is a probability density then µf � µ.
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Theorem 3 (Radon-Nikodym) If µ and ν are �nite measures on (X,M) such that ν � µ
then there exists a measurable function

f : X → [0,∞) such that ν = µf .

If g is any function such that ν = µg, then f = g almost everywhere (with respect to µ).

proof Idea: The idea is to construct explicitly a function f that satis�es the conditions of
the theorem. We will make use of the Hahn decomposition. We �rst consider the case where
both measures are �nite.

1.) µ(X) <∞ and ν(X) <∞.

a) Partitioning X

We �rst divide up X into suitable sets, where an approximation of f can be de�ned by sim-
ple functions. Fix c > 0. Then ν − cµ is a signed measure. Let {P (c), N(c)} be a Hahn
decomposition for ν − cµ . We have:

c2 ≥ c1 ⇒ for all E ∈M.

Picture

Now consider
⋃
k≥1

N(kc) and make it disjoint. We set:

A1 = N(c)

Ak = N(kc)\
⋃
j<k

N(jc) = .

We see ⋃
k≥1

N(kc) =
⊎
k≥1

Ak.
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If E ⊂ Ak and E ∈M then

E ⊆ N(kc) so

E ⊆ P ((k − 1)c) so , hence

(k − 1)cµ(E) ≤ ν(E) ≤ kcµ(E). (1)

This means that heuristically (k − 1)cµ ≤ ν ≤ kcµ on Ak. Let

B = X\
⊎
k≥1

Ak =

Since for any k ∈ N we have B ⊂ P (kc) and therefore 0 ≤ ν(B)− kcµ(B). Hence

As k may be chosen to be arbitrarily large, this implies µ(B) = 0 and therefore ν(B) = 0
since ν � µ.

b) Construction of f

We will use (1) to construct a function f that satis�es the conditions of the theorem. Let

gc(x) =

{
(k − 1)c if x ∈ Ak

0 if x ∈ B.

We see that gc =
∑
k≥1

(k − 1)c1Ak
. Then for all E ∈M, we have by (1)

∫
E
gcdµ ≤ . (2)

We now make a "re�nement" using the parameter c. To this end let fn = g2−n , and assume

m ≤ n in N. We want to show that (fn)n converges. To this end we note that by (2)∫
E

fndµ ≤ ν(E) ≤ and

∫
E

fmdµ ≤ ν(E) ≤ (3)

so, as 2−n ≤ 2−m we have∣∣∣∣∣∣
∫
E

(fn − fm)dµ

∣∣∣∣∣∣ ≤ .
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Apply this withE = E+ := {x ∈ X | fn(x)− fm(x) ≥ 0} andE = E− := {x ∈ X | fn(x)− fm(x) < 0}
to conclude ∫

X

|fn − fm| dµ ≤ .

In other words, (fn)n≥1 is a Cauchy sequence in L1(X,M, µ). Therefore, by Ch. 2.6. Prop.

6,7 we can extract a subsequence (fnk
)k≥1 such that fnk

→
k→∞

f almost everywhere. Thus we

can assume f(x) ≥ 0 for each x ∈ X.∣∣∣∣∣∣
∫
E

fndµ−
∫
E

fdµ

∣∣∣∣∣∣ ≤
As the latter goes to zero for n to in�nity by the 4 6= we have that∫

E

fndµ →
n→∞

∫
E

fdµ.

Returning to (3):

ν(E) = lim
n→∞

∫
E

fndµ =

∫
E

fdµ.

Can you prove uniqueness?
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2.) ν and µ are σ �nite

Now we extend the result to the σ-�nite case: Assume that

X =
⋃
n≥1

Xn with Xn ⊂ Xn+1 and ν(Xn) <∞, µ(Xn) <∞ for all n ∈ N .

We know that we can �nd hn : X → [0,∞) such that

1. hn(x)|XC
n
≡ 0,

2. For all E ∈M, E ⊂ Xn implies ν(E) =
∫
Xn

hndµ.

Now, if n ≤ m and E ⊆ Xn, then
∫
E

hndµ =
∫
E

hmdµ.

Picture

Thus hn|Xn = hm|Xn almost everywhere. Let fn(x) = max {h1(x), . . . , hn(x)} = hn(x)
almost everywhere with respect to µ. Then fn ↗ f : X → [0,∞]. If E ∈M then

ν(E) = lim
n→∞

ν(E ∩Xn)

=

=

= .

Now let A = {x | f(x) = +∞}. We see µ(A ∩ Xn) = 0 (otherwise ν(A ∩ Xn) = ∞). Thus
µ(A) = lim

n→∞
µ(A ∩Xn) = 0 and we can assume f : X → [0,∞). This completes our proof. �


