Math 73/103: Measure Theory and Complex Analysis Fall 2019 - Homework 3

1. Suppose that ρ is a premeasure on an algebra \mathcal{A} of sets in X. Let ρ^{o} be the associated outer measure.

- (a) Show that $\rho^{o}(E) = \rho(E)$ for all $E \in \mathcal{A}$.
- (b) If \mathcal{M}^{o} is the σ -algebra of ρ^{o} -measurable sets, show that $\mathcal{A} \subset \mathcal{M}^{o}$.

2. Suppose that (X, \mathcal{M}, μ) is a measure space. Recall that $E \in \mathcal{M}$ is called σ -finite if E is the countable union of sets of finite measure. Let $f \in \mathcal{L}^1(\mu)$.

- (a) Show that $\{x \in X : f(x) \neq 0\}$ is σ -finite.
- (b) Suppose that $f \ge 0$. Explain why there are measurable simple functions φ_n such that $\varphi_n \nearrow f$ almost everywhere and there is a single σ -finite set outside of which the φ_n vanish.
- (c) Given $\varepsilon > 0$ show that there is a simple function such that $\int_X |f \varphi| \, d\mu < \varepsilon$.
- (d) If $(X, \mathcal{M}, \mu) = (\mathbb{R}, \Lambda^o, \lambda)$ is Lebesgue measure, show that we can take the simple function φ in part (c) to be a step function that is, a finite linear combination of characteristic functions of *intervals*.

3. Suppose that $f \in \mathcal{L}^1(\mathbb{R}, \Lambda^o, \lambda)$ is a Lebesgue integrable function on the real line. Let $\varepsilon > 0$. Show that there is a continuous function g that vanishes outside a bounded interval such that $\|f - g\|_1 < \varepsilon$.

Hint: this is easy if f is the characteristic function of a bounded interval: draw a picture.

4. Let (X, \mathcal{M}, μ) be a measure space and let $(f_n)_n$, f functions, such that $f, f_n : X \to \mathbb{C}$ measurable. Show that if $f_n \xrightarrow{\mu} f$ then there is a subsequence $(f_{n_k})_k$ such that $f_{n_k} \to f$ almost everywhere. **Hint:** for each k let n_k be such that

$$n \ge n_k \Rightarrow \mu\left(\left\{x \in X : |f_n(x) - f(x)| \ge 2^{-k}\right\}\right) < 2^{-k}.$$

One of Littlewood's Principles is that a pointwise convergent sequence of functions is nearly uniformly convergent. This is also known as "Egoroff's Theorem".

5. Prove Egoroff's Theorem: Suppose that (X, \mathcal{M}, μ) is a finite measure space that is, $\mu(X) < \infty$. Suppose that $\{f_n\}$ is a sequence of measurable functions converging almost everywhere to a measurable function $f: X \to \mathbb{C}$. Then for all $\varepsilon > 0$ there is a set $E \in \mathcal{M}$ such that $\mu(X \setminus E) < \varepsilon$ and $f_n \to f$ uniformly on E.

Some suggestions:

- (a) There is no harm in assuming that $f_n \to f$ everywhere.
- (b) Let $E_n(k) = \bigcup_{m=n}^{\infty} \{ x \in X : |f_m(x) f(x)| \ge \frac{1}{k} \}.$
- (c) Show that $\lim_{n\to\infty} \mu(E_n(k)) = 0$. (You need $\mu(X) < \infty$ here.)
- (d) Fix $\varepsilon > 0$ and k. Choose $n_k \ge n$ so that $\mu(E_{n_k}(k)) < \frac{\varepsilon}{2^k}$, and let $E = \bigcup_{k=1}^{\infty} E_{n_k}(k)$.