Math 73/103: Measure Theory and Complex Analysis Fall 2019 - Homework 1

1. Show that the countable union of sets of measure zero in \mathbb{R} has measure zero.
2. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is bounded, and let \mathcal{P} and \mathcal{Q} be subdivisions of $[a, b]$. Prove that $L(f, \mathcal{P}) \leq U(f, \mathcal{Q})$, where $L(f, \mathcal{P})$ and $U(f, \mathcal{Q})$ are the lower and upper Riemann sums, respectively, for f on $[a, b]$.
Hint: The result is trivial if $\mathcal{P}=\mathcal{Q}$; now let $\mathcal{R}=\mathcal{P} \cup \mathcal{Q}$.
3. Prove that a bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ if and only if for all $\varepsilon>0$ there is a subdivision \mathcal{P} of $[a, b]$ such that

$$
U(f, \mathcal{P})-L(f, \mathcal{P})<\varepsilon
$$

4. (Rudin: page $31 \# 1$) Suppose that (X, \mathcal{M}) is a measurable space. Show that if \mathcal{M} is countable, then \mathcal{M} is finite.
Hint: Since \mathcal{M} is countable, you can show that $\omega_{x}=\bigcap\{E: E \in \mathcal{M}$ and $x \in E\}$ belongs to \mathcal{M}. The sets $\left\{\omega_{x}\right\}_{x \in X}$ partition X.
5. Let X be an uncountable set and let \mathcal{M} be the collection of subsets E of X such that either E or E^{c} is countable. Prove that \mathcal{M} is a σ-algebra.
6. Recall from calculus that if $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers, then $\sum_{n=1}^{\infty} a_{n}=\sup _{n} s_{n}$, where $s_{n}=a_{1}+\cdots+a_{n}$. (Note the value ∞ is allowed.)
(a) Show that $\sum_{n=1}^{\infty} a_{n}=\sup \left\{\sum_{k \in F} a_{k}: F\right.$ is a finite subset of $\left.\mathbb{Z}^{+}=1,2,3, \ldots\right\}$.

Note: The point of this problem is that if I is a (not necessarily countable) set, and if $a_{i} \geq 0$ for all $i \in I$, then we can define $\sum_{i \in I} a_{i}=\sup \left\{\sum_{k \in F} a_{k}: F\right.$ is a finite subset of $\left.I\right\}$, and our new definition coincides with the usual one when both make sense.
(b) Now let X be a set and $f: X \rightarrow[0, \infty)$ a function. For each $E \subset X$, define

$$
\nu(E):=\sum_{x \in E} f(x) .
$$

Show that ν is a measure on $(X, \mathcal{P}(X))$. In lecture, we considered the special cases of counting measure, where $f(x)=1$ for all $x \in X$, and the delta measure at x_{0}, where $f\left(x_{0}\right)=1$ for some $x_{0} \in X$ and $f(x)=0$ otherwise. Another important example is the case where $\sum_{x \in X} f(x)=$ 1. Then f is a (discrete) probability distribution on X and $\nu(E)$ is the probability of the event E for this distribution.
(c) Let X, f, and ν be as in part (b). Show that if $\nu(E)<\infty$, then $\{x \in E: f(x)>0\}$ is countable.
Hint: If $\{x \in E: f(x)>0\}$ is uncountable, then for some $m \in \mathbb{Z}^{+}$, the set

$$
\left\{x \in E: f(x)>\frac{1}{m}\right\} \text { is infinite. }
$$

This last result says that discrete probability distributions "live on" countable sample spaces.
7. (Rudin: page $31 \# 3$) Prove that if f is a real-valued function on a measurable space (X, \mathcal{M}) such that $\{x: f(x) \geq r\}$ is measurable for all rational r, then f is measurable.
8. (Rudin: page $31 \# 5$) Suppose that $f, g:(X, \mathcal{M}) \rightarrow[-\infty, \infty]$ are measurable functions. Prove that the sets

$$
\{x: f(x)<g(x)\} \quad \text { and } \quad\{x: f(x)=g(x)\}
$$

are measurable.
Remark: If $h=f-g$ were defined, then this problem would be much easier (why?). The problem is that $\infty-\infty$ and $-\infty+\infty$ make no sense, so h may not be everywhere defined.

