Math 73/103

Midterm Examination: Measure Theory

1. Let *X* be a measure space and $f : X \longrightarrow \mathbb{R}$ a measurable function. If A > 0 is a real number, define f_A by

$$f_A(x) = \begin{cases} -A & \text{if } f(x) < -A \\ f(x) & \text{if } |f(x)| \le A \\ A & \text{if } f(x) > A \end{cases}$$

a. Draw a picture.

b. Is f_A measurable?

2. Let (X, \mathfrak{M}, μ) be a measured space, \mathfrak{N} a σ -algebra contained in \mathfrak{M} and ν the restriction of μ to \mathfrak{N} . Assume that f is a non-negative ν -measurable function.

a. Prove that f is μ -measurable.

b. Compare $\int_X f d\nu$ and $\int_X f d\mu$. Can these integrals differ?

3. Let \mathfrak{M} be the σ -algebra on \mathbb{R} generated by the singletons.

a. Describe M.

b. Prove that the function $x \mapsto (x, |x|)$ is measurable from $(\mathbb{R}, \mathfrak{M})$ to $(\mathbb{R}^2, \mathfrak{M} \otimes \mathfrak{M})$.

c. Is the diagonal $\Delta = \{(x, x) : x \in \mathbb{R}\}$ an element of $\mathfrak{M} \otimes \mathfrak{M}$?

4. Let (X, \mathfrak{M}, μ) be a measured space such that $\mu(X) < \infty$. Let $g : \mathbb{C} \to \mathbb{C}$ be a continuous function and assume the existence of constants A, B > 0 such that

$$|g(z)| \le A|z| + B$$

for all $z \in \mathbb{C}$.

a. Let $v \in \mathscr{L}^1(X, \mathfrak{M}, \mu)$. Prove that $g \circ v \in \mathscr{L}^1(X, \mathfrak{M}, \mu)$.

For $u \in L^1(X, \mathfrak{M}, \mu)$, denote by G(u) the class in $L^1(X, \mathfrak{M}, \mu)$ of $g \circ v$, where $v \in u$. **b.** Verify that G(u) is well-defined, that is, it does not depend on the choice of v. **c.** Let $\{u_n\}_{n\geq 1}$ be a sequence in $L^1(X, \mathfrak{M}, \mu)$. Suppose that $u_n \xrightarrow{\text{a.e.}} u$ and all the sets

$$E_n = \left\{ x \in X : |u_n(x)| > \sqrt{2} \right\}$$

have measure 0. Prove that $G(u_n) \xrightarrow{L^1} G(u)$.

d. (Optional) Prove that $G: L^1(X, \mathfrak{M}, \mu) \longrightarrow L^1(X, \mathfrak{M}, \mu)$ is continuous.

5. Let f be a Lebesgue integrable function on \mathbb{R} . For a > 0, let $f_{\alpha} : x \mapsto f(ax)$. Express $\int_{\mathbb{R}} f_a d\lambda$ in terms of $\int_{\mathbb{R}} f d\lambda$. 6. Let ρ be the premeasure defined on the algebra $\mathcal{A} = \{ \emptyset, [1, 2], [1, 2]^c, \mathbb{R} \}$ by

 $\rho([1,2])=1 \qquad \text{and} \qquad \rho([1,2]^c)=+\infty.$

a. Determine the outer measure ρ^* induced by ρ .

b. Describe the ρ^* -measurable subsets of \mathbb{R} .

[EXTRA SPACE - p.1]

[EXTRA SPACE - p.2]