Math 73/103

Final Examination: Complex Analysis

1. For this problem only, short non-technical explanations will be accepted.
a. Let Γ be the cycle represented below (it has two connected components).

$$
\operatorname{Ind}_{\Gamma}(a)=
$$

b. Are the cycles γ and $\gamma_{1}+\gamma_{2}+\gamma_{3}$ homologous in the complement Ω of the shaded area? Why?

2. a. Prove that a bounded entire function $f \in H(\mathbb{C})$ is necessarily constant. (Do not quote Liouville's Theorem.)
b. Use (a) to prove that every non-constant polynomial has a complex root.
3. Let Ω be a simply connected region, $a \in \Omega$ and f a holomorphic function on Ω. For $z \in \Omega$, define

$$
F(z)=\int_{\gamma(z)} f(w) d w
$$

where $\gamma(z)$ is a path from a to z.
a. Recall why F is well-defined.
b. Prove that $F^{\prime}=f$.

4. Shwarz's Lemma.

a. Let u be a holomorphic function on a domain Ω containing a closed disk \bar{D}. Prove the existence of z_{0} on the boundary of \bar{D} such that

$$
|u(z)| \leq\left|u\left(z_{0}\right)\right|
$$

for all z in the interior D of the disk.
b. Let f be a holomorphic function from $D_{1}(0)=\{z \in \mathbb{C}:|z|<1\}$ to itself satisfying $f(0)=0$. Prove that

$$
|f(z)| \leq|z|
$$

for all $z \in D_{0}(1)$ and that $\left|f^{\prime}(0)\right| \leq 1$.
Hint: study the function $z \mapsto \frac{f(z)}{z}$ on $D_{r}(0)$ for $r<1$.

5. Gutzmer's Formula.

Let $f(z)=\sum_{n \geq 0} a_{n} z^{n}$ be an entire function and $\gamma(t)=r e^{i t}$ for $0 \leq t \leq 2 \pi$ with $r>0$.
a. Justify that

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{2} d t=\sum_{n \geq 0} \int_{0}^{2 \pi} \frac{f\left(r e^{i t}\right) \overline{a_{n}} r^{n}}{e^{i n t}} d t .
$$

b. Prove Gutzmer's Formula:

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{2} d t=2 \pi \sum_{n \geq 0}\left|a_{n}\right|^{2} r^{2 n}
$$

Hint: Cauchy's Formula for a_{n}.
6. Let f be a holomorphic function with real and imaginary parts u and v seen as functions of the polar coordinates, so that

$$
f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta) .
$$

The goal of this problem is to prove that on $\mathbb{C} \backslash\{0\}$,

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text { and } \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

a. Briefly describe your strategy.
b. Do it.
7. Evaluate, for $a>0$, the integral

$$
\mathcal{I}=\int_{-\infty}^{+\infty} \frac{\cos x}{x^{2}+a^{2}} d x
$$

You are not required to prove that \mathcal{I} absolutely convergent.
Suggestion: consider the function of the complex variable $f(z)=\frac{e^{i z}}{z^{2}+a^{2}}$ and a contour Γ_{R} consisting of the line segment $[-R, R]$ and a half-circle. Draw a picture.
[EXTRA SPACE - p.1]
[EXTRA SPACE - p.2]

