Math 73/103 - Fall 2016
Problem set 4

1. Recall that a sequence {f,} of measurable functions from (X,9) to C converges in
measure to a measurable function f : X — C if for all € > 0 we have lim,,_,, ,u(En(g)) =0
where

Bu(e) = { € X : |fula) — f(2)] = < }.

Show that, as claimed in lecture, if {f,} converges to f in measure then {f,} has a subse-
quence { fp, } which converges to f almost everywhere.
Some suggestions:

(a) Let ny be such that n > ny, implies u(E,(27%)) < 27
(b) Let Ex = E,, (27%) and G = U,,1»j, Em-
(c) Show that f,, (z) = f(z)if x ¢ A==, Gk

The last of Littlewood’s three principles is that every measurable function is nearly
continuous. This is known as “Lusin’s Theorem”.

2. Prove Lusin’s Theorem: Suppose that f is a Lebesgue measurable function on [a,b] C R.
Given € > 0, show that there is a closed subset K C [a,b] such that A([a,b] \ K) < ¢ and
that f|x is continuous. (Suggestion: use Problem 1, Egoroftf’s Theorem and the fact that
uniform limits of continuous functions are continuous.)

3. Let X\ be Lebesgue’s measure on [0, 1] and let x be counting measure. Clearly, A << pu.
Show that there is no function f satisfying the conclusion of the Radon-Nikodym Theorem.
Why is this not a counter-example to the Radon-Nikodym Theorem?

4. Suppose that f, — f in measure and that there is a ¢ € L£Y(X,9, ) is such that
|fn(z)] < g(z) for all z € X. Show that f, — f in L'(X, 0, ).



5. Let v be a complex measure on (X, ).

(a)

Show that there is a measure p and a measurable function ¢ : X — C so that |p| =1,
and such that for all £ € I,

V(E):/E@d,u. (1)

(Hint: write v = 11 — vy +i(v3 — vy) for measures v;. Put pg = v1 + v9 + v3+1v4. Then
o will satisfy (T) provided we don’t require |¢| = 1. You can then use without proof
the fact that any complex-valued measurable function h can be written as h = ¢ - |h|
with ¢ unimodular and measurable.)

Show that the measure p above is unique, and that ¢ is determined almost everywhere
[1]. (Hint: if g/ and ¢’ also satisfy (1), then show that p/ < p, and that %% =1
a.e. Also note that if ¢’ is unimodular and £ € 9, then F = U?:1 E; where F;, =
{r e E:Reyp >0}, Ey={z € E:Re¢ <0}, E3={x e EF:Imy¢ >0}, and
Ei={zxeE:Imy <0}.)

Comment: the measure p in question 5 is called the total variation of v, and the usual
notation is |v|. It is defined by different methods in Rudin’s text: see Chapter 6. One can
prove facts like |v|(E) > |v(E)| (although one doesn’t always have |v|(F) = |v(E)]).

6. Suppose that f : [a,b] — R is a bounded function. We want to show that f is Riemann
integrable if and only if

A({z €[a,b] : f is not continuous at x }) = 0.

Folland suggests the following strategy. Let

()
(b)

(c)

H(zx) = (lsim(sup{ fly):ly—z] <é}) and h(z)=lminf{ f(y): |y —z[ <3}
=0 0—0
Show that f is continuous at z if and only if H(z) = h(z).

In the notation of our proof that Riemann integral functions are Lebesgue integrable,
show that h = ¢ almost everywhere and H = u almost everywhere.

Conclude that [*hd\=R["fand ['Hd\=R[ .



