
Math 73/103 - Fall 2016

Problem set 4

1. Recall that a sequence {fn} of measurable functions from (X,M) to C converges in
measure to a measurable function f : X → C if for all ε > 0 we have limn→∞ µ

(
En(ε)

)
= 0

where
En(ε) = {x ∈ X : |fn(x)− f(x)| ≥ ε }.

Show that, as claimed in lecture, if {fn} converges to f in measure then {fn} has a subse-
quence {fnk

} which converges to f almost everywhere.
Some suggestions:

(a) Let nk be such that n ≥ nk implies µ(En(2−k)) < 2−k.

(b) Let Ek = Enk
(2−k) and Gk =

⋃
m≥k Em.

(c) Show that fnk
(x)→ f(x) if x /∈ A :=

⋂∞
k=1Gk.

The last of Littlewood’s three principles is that every measurable function is nearly
continuous. This is known as “Lusin’s Theorem”.

2. Prove Lusin’s Theorem: Suppose that f is a Lebesgue measurable function on [a, b] ⊂ R.
Given ε > 0, show that there is a closed subset K ⊂ [a, b] such that λ([a, b] \ K) < ε and
that f |K is continuous. (Suggestion: use Problem 1, Egoroff’s Theorem and the fact that
uniform limits of continuous functions are continuous.)

3. Let λ be Lebesgue’s measure on [0, 1] and let µ be counting measure. Clearly, λ << µ.
Show that there is no function f satisfying the conclusion of the Radon-Nikodym Theorem.
Why is this not a counter-example to the Radon-Nikodym Theorem?

4. Suppose that fn → f in measure and that there is a g ∈ L1(X,M, µ) is such that
|fn(x)| ≤ g(x) for all x ∈ X. Show that fn → f in L1(X,M, µ).
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5. Let ν be a complex measure on (X,M).

(a) Show that there is a measure µ and a measurable function ϕ : X → C so that |ϕ| = 1,
and such that for all E ∈M,

ν(E) =

∫
E

ϕdµ. (†)

(Hint: write ν = ν1− ν2 + i(ν3− ν4) for measures νi. Put µ0 = ν1 + ν2 + ν3 + ν4. Then
µ0 will satisfy (†) provided we don’t require |ϕ| = 1. You can then use without proof
the fact that any complex-valued measurable function h can be written as h = ϕ · |h|
with ϕ unimodular and measurable.)

(b) Show that the measure µ above is unique, and that ϕ is determined almost everywhere
[µ]. (Hint: if µ′ and ϕ′ also satisfy (†), then show that µ′ � µ, and that dµ′

dµ
= 1

a.e. Also note that if ϕ′ is unimodular and E ∈ M, then E =
⋃4
i=1Ei where E1 =

{x ∈ E : Reϕ′ > 0 }, E2 = {x ∈ E : Reϕ′ < 0 }, E3 = {x ∈ E : Imϕ′ > 0 }, and
E4 = {x ∈ E : Imϕ′ < 0 }.)

Comment: the measure µ in question 5 is called the total variation of ν, and the usual
notation is |ν|. It is defined by different methods in Rudin’s text: see Chapter 6. One can
prove facts like |ν|(E) ≥ |ν(E)| (although one doesn’t always have |ν|(E) = |ν(E)|).

6. Suppose that f : [a, b] → R is a bounded function. We want to show that f is Riemann
integrable if and only if

λ
(
{x ∈ [a, b] : f is not continuous at x }

)
= 0.

Folland suggests the following strategy. Let

H(x) = lim
δ→0

(
sup{ f(y) : |y − x| ≤ δ }

)
and h(x) = lim

δ→0
inf{ f(y) : |y − x| ≤ δ }.

(a) Show that f is continuous at x if and only if H(x) = h(x).

(b) In the notation of our proof that Riemann integral functions are Lebesgue integrable,
show that h = ` almost everywhere and H = u almost everywhere.

(c) Conclude that
∫ b
a
h dλ = R

∫ b

a
f and

∫ b
a
H dλ = R

∫ b

a
f .
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