Math 73/103 - Fall 2016 Problem set 4

1. Recall that a sequence $\{f_n\}$ of measurable functions from (X, \mathfrak{M}) to **C** converges in measure to a measurable function $f: X \to \mathbf{C}$ if for all $\varepsilon > 0$ we have $\lim_{n\to\infty} \mu(E_n(\varepsilon)) = 0$ where

$$E_n(\varepsilon) = \{ x \in X : |f_n(x) - f(x)| \ge \varepsilon \}.$$

Show that, as claimed in lecture, if $\{f_n\}$ converges to f in measure then $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ which converges to f almost everywhere.

Some suggestions:

- (a) Let n_k be such that $n \ge n_k$ implies $\mu(E_n(2^{-k})) < 2^{-k}$.
- (b) Let $E_k = E_{n_k}(2^{-k})$ and $G_k = \bigcup_{m > k} E_m$.
- (c) Show that $f_{n_k}(x) \to f(x)$ if $x \notin A := \bigcap_{k=1}^{\infty} G_k$.

The last of Littlewood's three principles is that every measurable function is nearly continuous. This is known as "Lusin's Theorem".

2. Prove Lusin's Theorem: Suppose that f is a Lebesgue measurable function on $[a, b] \subset \mathbf{R}$. Given $\varepsilon > 0$, show that there is a closed subset $K \subset [a, b]$ such that $\lambda([a, b] \setminus K) < \varepsilon$ and that $f|_K$ is continuous. (Suggestion: use Problem 1, Egoroff's Theorem and the fact that uniform limits of continuous functions are continuous.)

3. Let λ be Lebesgue's measure on [0, 1] and let μ be counting measure. Clearly, $\lambda \ll \mu$. Show that there is no function f satisfying the conclusion of the Radon-Nikodym Theorem. Why is this not a counter-example to the Radon-Nikodym Theorem?

4. Suppose that $f_n \to f$ in measure and that there is a $g \in \mathcal{L}^1(X, \mathfrak{M}, \mu)$ is such that $|f_n(x)| \leq g(x)$ for all $x \in X$. Show that $f_n \to f$ in $L^1(X, \mathfrak{M}, \mu)$.

- 5. Let ν be a complex measure on (X, \mathfrak{M}) .
 - (a) Show that there is a measure μ and a measurable function $\varphi : X \to \mathbf{C}$ so that $|\varphi| = 1$, and such that for all $E \in \mathfrak{M}$,

$$\nu(E) = \int_E \varphi \, d\mu. \tag{\dagger}$$

(Hint: write $\nu = \nu_1 - \nu_2 + i(\nu_3 - \nu_4)$ for measures ν_i . Put $\mu_0 = \nu_1 + \nu_2 + \nu_3 + \nu_4$. Then μ_0 will satisfy (†) provided we don't require $|\varphi| = 1$. You can then use without proof the fact that any complex-valued measurable function h can be written as $h = \varphi \cdot |h|$ with φ unimodular and measurable.)

(b) Show that the measure μ above is unique, and that φ is determined almost everywhere $[\mu]$. (Hint: if μ' and φ' also satisfy (\dagger), then show that $\mu' \ll \mu$, and that $\frac{d\mu'}{d\mu} = 1$ a.e. Also note that if φ' is unimodular and $E \in \mathfrak{M}$, then $E = \bigcup_{i=1}^{4} E_i$ where $E_1 = \{x \in E : \operatorname{Re} \varphi' > 0\}, E_2 = \{x \in E : \operatorname{Re} \varphi' < 0\}, E_3 = \{x \in E : \operatorname{Im} \varphi' > 0\}$, and $E_4 = \{x \in E : \operatorname{Im} \varphi' < 0\}$.)

Comment: the measure μ in question 5 is called the *total variation* of ν , and the usual notation is $|\nu|$. It is defined by different methods in Rudin's text: see Chapter 6. One can prove facts like $|\nu|(E) \ge |\nu(E)|$ (although one doesn't always have $|\nu|(E) = |\nu(E)|$).

6. Suppose that $f : [a, b] \to \mathbf{R}$ is a bounded function. We want to show that f is Riemann integrable if and only if

 $\lambda(\{x \in [a, b] : f \text{ is not continuous at } x\}) = 0.$

Folland suggests the following strategy. Let

$$H(x) = \lim_{\delta \to 0} \left(\sup\{ f(y) : |y - x| \le \delta \} \right) \text{ and } h(x) = \lim_{\delta \to 0} \inf\{ f(y) : |y - x| \le \delta \}.$$

- (a) Show that f is continuous at x if and only if H(x) = h(x).
- (b) In the notation of our proof that Riemann integral functions are Lebesgue integrable, show that $h = \ell$ almost everywhere and H = u almost everywhere.
- (c) Conclude that $\int_a^b h \, d\lambda = \mathcal{R} \underline{\int}_a^b f$ and $\int_a^b H \, d\lambda = \mathcal{R} \overline{\int}_a^b f$.