Math 73/103 - Fall 2016 Problem set 3

1. Suppose that Y is a topological space and that \mathfrak{M} is a σ -algebra in Y containing all the Borel sets. Suppose in addition, μ is a measure on (Y, \mathfrak{M}) such that for all $E \in \mathfrak{M}$ we have

$$\mu(E) = \inf\{\,\mu(V) : V \text{ is open and } E \subset V\,\}.$$
(1)

Suppose also that

$$Y = \bigcup_{n=1}^{\infty} Y_n \quad \text{with } \mu(Y_n) < \infty \text{ for all } n \ge 1.$$
(2)

One says that μ is a σ -finite outer regular measure on (Y, \mathfrak{M}) .

- (a) Show that Lebesgue measure λ is a σ -finite outer regular measure on (\mathbf{R}, Λ^*) .
- (b) Suppose E is a μ -measurable subset of Y.
 - (i) Given $\varepsilon > 0$, show that there is an open set $V \subset Y$ and a closed set $F \subset Y$ such that $F \subset E \subset V$ and $\mu(V \setminus F) < \varepsilon$.
 - (ii) Show that there is a G_{δ} -set $G \subset Y$ and a F_{σ} -set $A \subset Y$ such that $A \subset E \subset G$ and $\mu(G \setminus A) = 0$.
- (c) Argue that $(\mathbf{R}, \Lambda^*, \lambda)$ is the completion of the restriction of Lebesgue measure to the Borel sets in \mathbf{R} .

2. Let λ be Lebesgue measure on **R** and suppose that E is a set of finite measure. Given $\varepsilon > 0$, show that there is a finite *disjoint* union F of open intervals such that $\lambda(E \triangle F) < \varepsilon$ where $E \triangle F := (E \setminus F) \cup (F \setminus E)$ is the symmetric difference. (This illustrates the first of Littlewood's three principles: "Every Lebesgue measurable set is nearly a disjoint union of open intervals".)

3. Suppose that (X, \mathfrak{M}, μ) is a measure space. Recall that $E \in \mathfrak{M}$ is called σ -finite if E is the countable union of sets of finite measure. Let $f \in \mathcal{L}^1(\mu)$.

(a) Show that $\{x \in X : f(x) \neq 0\}$ is σ -finite.

- (b) Suppose that $f \ge 0$. Show that there are (measurable) simple functions φ_n such that $\varphi_n \nearrow f$ everywhere and there is a single σ -finite set outside of which the φ_n vanish.
- (c) Given $\varepsilon > 0$ show that there is a simple function such that $\int_{Y} |f \varphi| d\mu < \varepsilon$.
- (d) If $(X, \mathfrak{M}, \mu) = (\mathbf{R}, \Lambda^*, \lambda)$ is Lebesgue measure, show that we can take the simple function φ in part (c) to be a step function that is, a finite linear combination of characteristic functions of *intervals*.

4. Suppose that $f \in \mathcal{L}^1(\mathbf{R}, \Lambda^*, \lambda)$ is a Lebesgue integrable function on the real line. Let $\varepsilon > 0$. Show that there is a continuous function g that vanishes outside a bounded interval such that $||f - g||_1 < \varepsilon$. (Hint: this is easy if f is the characteristic function of a bounded interval: draw a picture.)

Another of Littlewood's Principles is that a pointwise convergent sequence of functions is nearly uniformly convergent. This is also known as "Egoroff's Theorem".

5. Prove Egoroff's Theorem: Suppose that (X, \mathfrak{M}, μ) is a finite measure space — that is, $\mu(X) < \infty$. Suppose that $\{f_n\}$ is a sequence of measurable functions converging almost everywhere to a measurable function $f: X \to \mathbb{C}$. Then for all $\varepsilon > 0$ there is a set $E \in \mathfrak{M}$ such that $\mu(X \setminus E) < \varepsilon$ and $f_n \to f$ uniformly on E.

Some suggestions:

- (a) There is no harm in assuming that $f_n \to f$ everywhere.
- (b) Let $E_n(k) = \bigcup_{m=n}^{\infty} \{ x \in X : |f_m(x) f(x)| \ge \frac{1}{k} \}.$
- (c) Show that $\lim_{n\to\infty} \mu(E_n(k)) = 0$. (You need $\mu(X) < \infty$ here.)
- (d) Fix $\varepsilon > 0$ and k. Choose $n_k \ge n$ so that $\mu(E_{n_k}(k)) < \frac{\varepsilon}{2^{-k}}$, and let $E = \bigcup_{k=1}^{\infty} E_{n_k}(k)$.

6. Suppose that ρ is a premeasure on an algebra \mathcal{A} of sets in X. Let ρ^* be the associated outer measure.

- (a) Show that $\rho^*(E) = \rho(E)$ for all $E \in \mathcal{A}$.
- (b) If \mathfrak{M}^* is the σ -algebra of ρ^* -measurable sets, show that $\mathcal{A} \subset \mathfrak{M}^*$.