Math 73/103 - Fall 2016 Problem set 1

1. Show that the *countable* union of sets of measure zero in \mathbf{R} has measure zero.

2. Suppose $f : [a, b] \to \mathbf{R}$ is bounded, and let \mathcal{P} and \mathcal{Q} be subdivisions of [a, b]. Prove that $L(f, \mathcal{P}) \leq U(f, \mathcal{Q})$, where $L(f, \mathcal{P})$ and $U(f, \mathcal{Q})$ are the lower and upper Riemann sums, respectively, for f on [a, b]. (Hint: the result is trivial if $\mathcal{P} = \mathcal{Q}$; now let $\mathcal{R} = \mathcal{P} \cup \mathcal{Q}$.)

3. Prove that a bounded function $f : [a, b] \to \mathbf{R}$ is Riemann integrable on [a, b] if and only if for all $\varepsilon > 0$ there is a subdivision \mathcal{P} of [a, b] such that

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) < \varepsilon.$$

4. (*Rudin*: page 31 #1) Suppose that (X, \mathcal{M}) is a measurable space. Show that if \mathcal{M} is countable, then \mathcal{M} is finite. (Hint: since \mathcal{M} is countable, you can show that $\omega_x = \bigcap \{ E : E \in \mathcal{M} \text{ and } x \in E \}$ belongs to \mathcal{M} . The sets $\{ \omega_x \}_{x \in X}$ partition X.)

5. Let X be an uncountable set and let \mathcal{M} be the collection of subsets E of X such that either E or E^c is countable. Prove that \mathcal{M} is a σ -algebra.

6. Recall from calculus that if $\{a_n\}$ is a sequence of nonnegative real numbers, then $\sum_{n=1}^{\infty} a_n = \sup_n s_n$, where $s_n = a_1 + \cdots + a_n$. (Note the value ∞ is allowed.)

- (a) Show that $\sum_{n=1}^{\infty} a_n = \sup\{\sum_{k \in F} a_k : F \text{ is a finite subset of } \mathbf{Z}^+ = 1, 2, 3, \dots\}$. (The point of this problem is that if I is a (not necessarily countable) set, and if $a_i \ge 0$ for all $i \in I$, then we can define $\sum_{i \in I} a_i = \sup\{\sum_{k \in F} a_k : F \text{ is a finite subset of } I\}$, and our new definition coincides with the usual one when both make sense.)
- (b) Now let X be a set and $f: X \to [0, \infty)$ a function. For each $E \subset X$, define

$$\nu(E) := \sum_{x \in E} f(x)$$

Show that ν is a measure on $(X, \mathcal{P}(X))$. (In lecture, we considered the special cases of *counting* measure, where f(x) = 1 for all $x \in X$, and the *delta measure at* x_0 , where $f(x_0) = 1$ for some $x_0 \in X$ and f(x) = 0 otherwise. Another important example is the case where $\sum_{x \in X} f(x) = 1$. Then f is a (discrete) probability distribution on X and $\nu(E)$ is the probability of the event E for this distribution.)

(c) Let X, f, and ν be as in part (b). Show that if $\nu(E) < \infty$, then $\{x \in E : f(x) > 0\}$ is countable. Hint: if $\{x \in E : f(x) > 0\}$ is uncountable, then for some $m \in \mathbb{Z}^+$, the set $\{x \in E : f(x) > \frac{1}{m}\}$ is infinite. (Note that this last result says that discrete probability distributions "live on" countable sample spaces.) 7. (*Rudin*: page 31 #3) Prove that if f is a real-valued function on a measurable space (X, \mathcal{M}) such that $\{x : f(x) \ge r\}$ is measurable for all rational r, then f is measurable.

8. (*Rudin*: page 31 #5) Suppose that $f, g : (X, \mathcal{M}) \to [-\infty, \infty]$ are measurable functions. Prove that the sets

$$\{x : f(x) < g(x)\}$$
 and $\{x : f(x) = g(x)\}$

are measurable. (Remark: if h = f - g were defined, then this problem would be much easier (why?). The problem is that $\infty - \infty$ and $-\infty + \infty$ make no sense, so h may not be everywhere defined.)