Theorem 1 (Folland - Theorem 2.28). Suppose that f is a bounded real-
valued function on [a,b).

1. If f is Riemann integrable, then f is Lebesgue measurable and therefore
integrable. Furthermore

b
R = dM.
lf ] (1)

2. Also, f is Riemann integrable if and only if the set of discontinuities
of f has measure zero.

Proof. Let P ={a =1ty <ty <--- <t, =0} be a subdivision of [a,b] and
define

E’P = Zmi]l(tiflvti} a’nd UP = Z Mi]l(tifhti}’
i=1

=1

where
m; = 1inf{ f(x) : @ € [t;_1,8;] } and M, :=sup{ f(z) : z € [ti_1,t] }.
Notice that

tpd\=L(f,P) and / upd\ = U(f,P).

(a,b] [a,b]

We can choose sequences of subdivisions { Qy } and { Ry } such that

b —b
lmegmznlf“wdlyUmnwznffﬁ )

Let P, ={a=1ty < --- <t, =0} be asubdivision which is refinement of
the subdivisions Q. and Ry as well as Py_1, and which also has the property
that ||Px| := max(t;—t;—1) < % Since P, is a refinement of both Q) and Ry,
(2) holds with Qj and Ry each replaced by Py. Since Pri; is a refinement
of Py, it follows that

£Pk+1 2 fpk and U,pk_H S Up,,-
Therefore we obtain bounded measurable functions ¢ and u on [a, b] by

(.= sgp lp, = hllcrn lp, and wu:= lef up, = 11}£n Up, .
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Clearly
(< f<u.

Since bounded functions are Lebesgue integrable on [a,b] and since u =
limy, up, and ¢ = limy ¢p,, the Lebesgue Dominated Convergence Theorem

implies that
b —b
/ Kd)\:R/ f and / ud)\:R/ f.
[a,b} Y _a [a,b} a

Now if f is Riemann integrable, the upper and lower integrals coincide

and we have
/ (1 — 0)dA = 0.
[a,b]

Since u — ¢ > 0, this implies that ¢ = f = u a.e. Since Lebesgue measure is
complete, f is measurable, and

b
R / f= fd.
a [a,b]
This proves the first part.

To prove the second assertion, first observe that if z € [a,b] and if 0 <
0 < ¢, then

sup{ f(y) : |y — 2| <40} <sup{ f(y):|y—=z| <0}
It follows that

limsup{ f(y) : [y —x[ <9} = infsup{ f(y) : |y —a| <0} (3)

Thus we get a well defined function H on [a, b] by setting H(x) equal to (3).
Similarly, we can define h on [a,b] by

Ba) o= gt (o) [y — o] 0} = supint{ /) |y —a| <6} (@
We clearly have h(z) < f(x) < H(z) for all x € [a, b].

Suppose that f is continuous at x. Then given € > 0 there is a 0 > 0 such
that whenever |y — 2| < ¢ we have |f(y) — f(z)| < e. This is the same as

flz) —e < fly) < flx) +e ()
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It follows from (3) and (5) that H(x) < f(x) + e. Since ¢ is arbitrary, we
must have H(x) < f(z). Thus H(z) = f(z) in the event that f is continuous
at z. Similarly, combining (3) and (4) shows that h(z) > f(z) — e for any
e > 0. Thus forces h(x) = f(z) when f is continuous at z. In particular,
H(x) = h(zx) if f is continuous at .

Now suppose that H(x) = h(z). Note that the common value must be
f(z). Thus given € > 0, there is — in view of (3) and (4) — a d > 0 such
that

fle)+e=H(x)+e>sup{ f(y):ly—x| <5} and (6)
f(@)—e=h(z)—e<inf{ f(y): ly—z| <} (7)
Thus if |y — z| < §, then we have
f(x)—e < fly) < flz)+e or [f(y)—[flz)|<e

This shows that f is continuous at z if and only if H(x) = h(x).!

IfP={a=ty<---<t,=>} is any subdivision of [a,b] and if x ¢ P,
then there is a ¢ > 0 such that {y : |y — x| < §} NP = 0. In particular,
{y:|ly—=x| <0} C(ti—1,t;) for some i, and

M; = sup{ f(y) : ly —=| <4}

It follows that up(x) > H(x) for all x ¢ P. Now let
N = U'Pk
k

Then N is countable, and therefore has Lebesgue measure 0. Furthermore if
x ¢ N, then
u(z) == infup, (z) > H(x).

On the other hand, given ¢ N and ¢ > 0, there is a § > 0 such that
H(z)+e>sup{ f(y):|ly—z| <d}.

Pick k such that % < §. Since x ¢ Py, x € (t;_1,t;) for some subinterval in
Py. Since || Prl| < 5, M; < sup{ f(y) : l[y — x| <6} and

H(z) 4+ e > up, (x) > u(z).

! This is the first of Folland’s suggested “Lemmas”.
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Since € was arbitrary, we conclude that H(z) = u(x) for all x ¢ N. In
particular, H is measurable and

—b
/ HdA:R/ I
[a,b] a

A similar argument implies that h(z) = ¢(x) for all x ¢ N. Thus h is

measurable and? ,
/ hdr=TR / f
[a,b] Y _a

Now if f is continuous almost everywhere, it follows that H = h a.e.
Thus the upper and lower Riemann integrals must be equal and f is Riemann
integrable. On the other hand, if f is Riemann integrable, the upper and
lower integrals are equal and

/ (H — h)d\ = 0.
.t

Since H — h > 0, we must have H = h a.e. It follows that f is continuous
almost everywhere. O

2This is essentially Folland’s Lemma (b).
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