Math 102 Foundations of Smooth Manifolds Fall 2011 Assignment 5 Due November 21, 2011

- 1. (Lee 19-7) Let $U = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_i > 0\}$ now let $X = x_2 \frac{\partial}{\partial x_3} x_3 \frac{\partial}{\partial x_2}$ and $Y = x_3 \frac{\partial}{\partial x_1} x_1 \frac{\partial}{\partial x_3}$. The vector fields X and Y determine a smooth *involutive* 2-plane distribution Δ on U. Find an explicit flat coordinate system for this distribution in the neighborhood of (1, 1, 1). (**Hint:** Use the method outlined in class.)
- 2. Boothby IV.7.2
- 3. Boothby IV.7.4
- 4. Boothby IV.7.5
- 5. Boothby IV.8.2
- 6. (10 Points) The point of the following exercises is to prove the following theorem:

Theorem 0.1. Let G be a connected abelian Lie group, then G is isomorphic as a Lie group to $T^k \times R^m$.

(a) Show that a non-trivial discrete subgroup Γ of a finite dimensional real vector space V is generated by linearly independent vectors $\gamma_1, \gamma_2 \dots, \gamma_k \in V$. (**Hint:** Use induction on the dimension of V. The case where dim V = 1 is fairly clear (?). Now assume it is true for n. Now consider V of dimension n + 1 and put an inner product $\langle \cdot, \cdot \rangle$ and let $\gamma_1 \neq 0 \in \Gamma$ have the smallest positive norm and let W be the orthogonal complement of $\mathbb{R} \cdot \gamma_1$. Now let $\pi : V = \mathbb{R} \cdot \gamma_1 \oplus W \to W$ be the projection. Then $\pi(\Gamma)$ is a subgroup of W, that does not contain a non-zero element with norm less than $\frac{|\gamma_1|}{2}$ (why?). Then $\pi(\Gamma)$ is a discrete subgroup of W and by induction is generated by linearly independent vectors $\hat{\gamma}_2, \dots, \hat{\gamma}_k \in W$ where $k \leq n + 1$. So $\pi : \Gamma \to \langle \hat{\gamma}_2, \dots, \hat{\gamma}_k \rangle$ has kernel $\langle \gamma_1 \rangle$ and we obtain a short exact sequence:

$$0 \to \langle \gamma_1 \rangle \to \Gamma \xrightarrow{\pi} \langle \hat{\gamma}_2, \dots, \hat{\gamma}_k \rangle \to 0.$$

This is a split exact sequence (why?), which allows you to conclude what about Γ ?)

- (b) Let G be a connected Lie group. Then for any U neighborhood of the identity element, we have $G = \langle U \rangle$; that is, G is generated by U. (**Hint:** Consider V a neighborhood of e contained in U such that $V = V^{-1} \equiv \{x^{-1} : x \in V\}$ (why should this exist?) and let $H = \bigcup_{n=1}^{\infty} V^n$, where $V^n \equiv \{x_1 \cdot x_n : x_i \in V\}$. Then H is a non-trivial subgroup of $\langle U \rangle$. Show that H is both open and closed in G. Hence?)
- (c) Show that if G is a connected abelian Lie group, then $\exp : T_e G \to G$ is a surjective Lie group homomorphism. (**Hint:** the naturality of the exponential map and the fact that in this case multiplication is a Lie group homomorphism, might prove to be useful.) (Please note than in general exp is *not* a homomorphism nor is it surjective, even when G is connected.)
- (d) Show that if G is a connected abelian Lie group, then the kernel of $\exp: T_e G \to G$ is a discrete subgroup of $T_e G$.
- (e) Prove the theorem.