Math 102 Foundations of Smooth Manifolds Fall 2011 Assignment 4 Due November 4, 2011

- 1. Let $F: N \to M_1 \times M_2$ given by $F(p) = (f_1(p), f_2(p))$ be a smooth map. Show that for any $p \in N$ $F_*: T_p N \to T_{F(p)} M_1 \times M_2 \equiv T_{f_1(p)} N_1 \times T_{f_2(p)} N_2$ is given by $F_*(X) = (f_{1*}(X), f_{2*}(X)).$
- 2. Let G be a Lie group, $m: G \times G \to G$ denote multiplication and $i: G \to G$ denote inversion.
 - (a) Show that $m_*: T_{(e,e)}(G \times G) \equiv T_e G \times T_e G \to T_e G$ is given by $m_*(X,Y) = X + Y$.
 - (b) Let $f: G \to G$ and $h: G \to G$ be smooth functions such that f(e) = h(e) = e, and let $F: G \to G$ be given by F(g) = f(g)h(g). Show that $F_*: T_eG \to T_eG$ is given by $F_*(X) = f_*(X) + h_*(X)$.
 - (c) Show that $i_*: T_e G \to T_e G$ is given by $i_*(X) = -X$.
- 3. Let $F: M \to N$ be a smooth map. A point $p \in M$ is said to be a *critical point* of F if $F_*: T_pM \to T_{F(p)}N$ is not surjective; otherwise, we say that p is a *regular point*. A point $q \in N$ is said to be a regular value if each $p \in F^{-1}(q)$ is a regular value. Show that if $q \in N$ is a regular value and $S \equiv F^{-1}(q)$ is non-empty, then
 - (a) S is an imbedded submanifold of dimension $\dim M \dim N$ (Hint: Show that the set of regular values of F is an open subset of M.);
 - (b) for each $p \in S$, the tangent space T_pS can be identified with the subspace ker $(F_*: T_pM \to T_{F(p)}N)$.
- 4. Consider the determinant map det : $\operatorname{GL}_n(\mathbb{R}) \to \mathbb{R}$.
 - (a) Using the matrix entries as global coordinates on $\operatorname{GL}_n(\mathbb{R})$ show that

$$\frac{\partial}{\partial x_{ij}} \det X = \det(X)(\hat{x}_{ij}),$$

where $X^{-1} = (\hat{x}_{ij})$. (Hint: Expand det by minors along the *i*-th column and use Cramer's Rule.)

- (b) Conclude that for each $X \in \operatorname{GL}_n(\mathbb{R})$ the differential $\det_* : T_X \operatorname{GL}_n(\mathbb{R}) \to T_{\det(X)}\mathbb{R}$ is given by $\det_*(B) = \det(X)\operatorname{tr}(X^{-1}B)$, for any $B \in T_X \operatorname{GL}_n(\mathbb{R}) \equiv M_{n \times n}(\mathbb{R})$.
- (c) Conclude that det : $\operatorname{GL}_n(\mathbb{R}) \to \mathbb{R}$ is a submersion.
- (d) Show that $SL_n(\mathbb{R}) = \det^{-1}(1)$ is an imbedded submanifold of dimension $n^2 1$ and it is therefore a Lie subgroup of $GL_n(\mathbb{R})$.
- 5. Boothby IV.4.4
- 6. Boothby IV.4.7
- 7. Boothby IV.5.6
- 8. Boothby IV.6.5