Math 102
Foundations of Smooth Manifolds
Fall 2011
Assignment 4

Due November 4, 2011

1. Let $F: N \rightarrow M_{1} \times M_{2}$ given by $F(p)=\left(f_{1}(p), f_{2}(p)\right)$ be a smooth map. Show that for any $p \in N$ $F_{*}: T_{p} N \rightarrow T_{F(p)} M_{1} \times M_{2} \equiv T_{f_{1}(p)} N_{1} \times T_{f_{2}(p)} N_{2}$ is given by $F_{*}(X)=\left(f_{1 *}(X), f_{2 *}(X)\right)$.
2. Let G be a Lie group, $m: G \times G \rightarrow G$ denote multiplication and $i: G \rightarrow G$ denote inversion.
(a) Show that $m_{*}: T_{(e, e)}(G \times G) \equiv T_{e} G \times T_{e} G \rightarrow T_{e} G$ is given by $m_{*}(X, Y)=X+Y$.
(b) Let $f: G \rightarrow G$ and $h: G \rightarrow G$ be smooth functions such that $f(e)=h(e)=e$, and let $F: G \rightarrow G$ be given by $F(g)=f(g) h(g)$. Show that $F_{*}: T_{e} G \rightarrow T_{e} G$ is given by $F_{*}(X)=f_{*}(X)+h_{*}(X)$.
(c) Show that $i_{*}: T_{e} G \rightarrow T_{e} G$ is given by $i_{*}(X)=-X$.
3. Let $F: M \rightarrow N$ be a smooth map. A point $p \in M$ is said to be a critical point of F if $F_{*}: T_{p} M \rightarrow$ $T_{F(p)} N$ is not surjective; otherwise, we say that p is a regular point. A point $q \in N$ is said to be a regular value if each $p \in F^{-1}(q)$ is a regular value. Show that if $q \in N$ is a regular value and $S \equiv F^{-1}(q)$ is non-empty, then
(a) S is an imbedded submanifold of dimension $\operatorname{dim} M-\operatorname{dim} N$ (Hint: Show that the set of regular values of F is an open subset of M.);
(b) for each $p \in S$, the tangent space $T_{p} S$ can be identified with the subspace $\operatorname{ker}\left(F_{*}: T_{p} M \rightarrow\right.$ $\left.T_{F(p)} N\right)$.
4. Consider the determinant map det : $\mathrm{GL}_{n}(\mathbb{R}) \rightarrow \mathbb{R}$.
(a) Using the matrix entries as global coordinates on $\mathrm{GL}_{n}(\mathbb{R})$ show that

$$
\frac{\partial}{\partial x_{i j}} \operatorname{det} X=\operatorname{det}(X)\left(\hat{x}_{i j}\right)
$$

where $X^{-1}=\left(\hat{x}_{i j}\right)$. (Hint: Expand det by minors along the i-th column and use Cramer's Rule.)
(b) Conclude that for each $X \in \mathrm{GL}_{n}(\mathbb{R})$ the ${\operatorname{differential~} \operatorname{det}_{*}: T_{X} \mathrm{GL}_{n}(\mathbb{R}) \rightarrow T_{\operatorname{det}(X)} \mathbb{R} \text { is given by }}$ $\operatorname{det}_{*}(B)=\operatorname{det}(X) \operatorname{tr}\left(X^{-1} B\right)$, for any $B \in T_{X} \mathrm{GL}_{n}(\mathbb{R}) \equiv M_{n \times n}(\mathbb{R})$.
(c) Conclude that det : $\operatorname{GL}_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ is a submersion.
(d) Show that $\mathrm{SL}_{n}(\mathbb{R})=\operatorname{det}^{-1}(1)$ is an imbedded submanifold of dimension $n^{2}-1$ and it is therefore a Lie subgroup of $\mathrm{GL}_{n}(\mathbb{R})$.
5. Boothby IV.4.4
6. Boothby IV.4.7
7. Boothby IV.5.6
8. Boothby IV.6.5

