Math 102
Foundations of Smooth Manifolds
Fall 2011
Assignment 3
Due October 19, 2011

1. Boothby IV.2.10
2. Boothby IV.3.6
3. Boothby IV.3.8
4. Boothby IV.3.9
5. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be given by $F(x, y, z)=\left(x^{2}-y^{2}, x y, x z, y z\right)$ and let $S^{2} \subset \mathbb{R}^{3}$ be the unit sphere centered at the origin of \mathbb{R}^{3}. Now observe that for any $p \in S^{2}$ we have $F(p)=F(-p)$, so we obtain an induced map $\widetilde{F}: \mathbb{R} P^{2} \rightarrow \mathbb{R}^{4}$ given by $\widetilde{F}([p])=F(p)$. Show that
(a) \widetilde{F} is an immersion.
(b) \widetilde{F} is injective.
(c) \widetilde{F} is an imbedding.
6. Consider $G=\mathrm{GL}_{2}(\mathbb{R})$ with the usual C^{∞} structure generated by the atlas $\mathcal{A}=\left\{\left(\mathrm{GL}_{2}(\mathbb{R}), \phi\right)\right\}$, where $\phi: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow W \subset \mathbb{R}^{4}$ given by

$$
\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right] \mapsto\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

and $W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1} x_{4}-x_{2} x_{3} \neq 0\right\}$. Then $G \times G$ has the C^{∞}-structure generated by the atlas $\{(G \times G, \phi \times \phi)\}$. Let $m: G \times G \rightarrow G$ be the multiplication map, $i: G \rightarrow G$ the inversion map and I denote the identity matrix.
(a) Compute the matrix of $m_{*}: T_{(I, I)} G \times G \rightarrow T_{I} G$ relative to the coordinate frames induced by the charts above. Conclude that $m_{*}: T_{(I, I)} G \times G \equiv T_{I} G \times T_{I} G \rightarrow T_{I} G$ is just addition.
(b) Compute the matrix of $i_{*}: T_{I} G \rightarrow T_{I} G$ relative to the coordinate frames induced by the charts above. Conclude that $i_{*}: T_{I} G \rightarrow T_{I} G$ is given by $X \mapsto-X$?
7. (Lee 1-5) Let $N=(0,0, \ldots, 0,1)$ be the "north pole" in $S^{n} \subset \mathbb{R}^{n+1}$, and let $S=-N$ be the "south pole." Define stereographic projection $\sigma: S^{n} \backslash\{N\} \rightarrow \mathbb{R}^{n}$ by

$$
\sigma\left(x_{1}, \ldots, x_{n+1}\right)=\frac{\left(x_{1}, \ldots, x_{n}\right)}{1-x_{n+1}}
$$

Let $\tilde{\sigma}(x)=-\sigma(-x)$ for $x \in S^{n} \backslash\{S\}$.
(a) For any $x \in S^{n} \backslash\{N\}$, show that $\sigma(x)$ is the point where the line through N and x intersects the linear subspace where $x_{n+1}=0$ (identified) with \mathbb{R}^{n} in the obvious way). Similarly, show that $\tilde{\sigma}(x)$ is the point where the line through S and x intersects the same subspace.
(b) Show that σ is bijective and

$$
\sigma^{-1}\left(u_{1}, \ldots, u_{n}\right)=\frac{\left(2 u_{1}, \ldots, 2 u_{n},\|u\|^{2}-1\right)}{\|u\|^{2}+1}
$$

(c) Compute the transition map $\tilde{\sigma} \circ \sigma^{-1}$ and verify that the atlas $\mathcal{A}_{\text {stereo }}=\left\{\left(S^{n} \backslash\{N\}, \sigma\right),\left(S^{n} \backslash\{S\}, \tilde{\sigma}\right)\right\}$ defines a smooth structure on S^{n}.
(d) Is the smooth structure generated by $\mathcal{A}_{\text {stereo }}$ the same as that generated by $\mathcal{A}_{\text {hem }}=\left\{\left(U_{i}^{ \pm}, \phi_{i}^{ \pm}\right)\right\}_{i=1}^{n+1}$, the atlas constructed in class?
8. Let M be a smooth n-manifold with differentiable structure \mathcal{U}. We say that M is orientable (with respect to $\mathcal{U})$ if there is an atlas $\mathcal{A}=\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}_{\alpha \in J} \subset \mathcal{U}$ so that for each $\alpha, \beta \in J$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$ the differential

$$
\left(\phi_{\beta} \circ \phi_{\alpha}^{-1}\right)_{*}: T_{\phi_{\alpha}(p)} \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow T_{\phi_{\beta}(p)} \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

has positive determinant for all $p \in U_{\alpha} \cap U_{\beta}$. Otherwise, we say M is non-orientable.
(a) Show that S^{n} with the usual differentiable structure is orientable.
(b) Show that for any smooth manifold M, its tangent bundle $T M$ equipped with the usual differentiable structure is orientable.

