Math 102 Foundations of Smooth Manifolds Fall 2011 Assignment 3 Due October 19, 2011

- 1. Boothby IV.2.10
- 2. Boothby IV.3.6
- 3. Boothby IV.3.8
- 4. Boothby IV.3.9
- 5. Let $F : \mathbb{R}^3 \to \mathbb{R}^4$ be given by $F(x, y, z) = (x^2 y^2, xy, xz, yz)$ and let $S^2 \subset \mathbb{R}^3$ be the unit sphere centered at the origin of \mathbb{R}^3 . Now observe that for any $p \in S^2$ we have F(p) = F(-p), so we obtain an induced map $\widetilde{F} : \mathbb{R}P^2 \to \mathbb{R}^4$ given by $\widetilde{F}([p]) = F(p)$. Show that
 - (a) \widetilde{F} is an immersion.
 - (b) \widetilde{F} is injective.
 - (c) \widetilde{F} is an imbedding.
- 6. Consider $G = \operatorname{GL}_2(\mathbb{R})$ with the usual C^{∞} structure generated by the atlas $\mathcal{A} = \{(\operatorname{GL}_2(\mathbb{R}), \phi)\}$, where $\phi : \operatorname{GL}_2(\mathbb{R}) \to W \subset \mathbb{R}^4$ given by

$$\left[\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array}\right] \mapsto (x_1, x_2, x_3, x_4),$$

and $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 x_4 - x_2 x_3 \neq 0\}$. Then $G \times G$ has the C^{∞} -structure generated by the atlas $\{(G \times G, \phi \times \phi)\}$. Let $m : G \times G \to G$ be the multiplication map, $i : G \to G$ the inversion map and I denote the identity matrix.

- (a) Compute the matrix of $m_*: T_{(I,I)}G \times G \to T_IG$ relative to the coordinate frames induced by the charts above. Conclude that $m_*: T_{(I,I)}G \times G \equiv T_IG \times T_IG \to T_IG$ is just addition.
- (b) Compute the matrix of $i_*: T_I G \to T_I G$ relative to the coordinate frames induced by the charts above. Conclude that $i_*: T_I G \to T_I G$ is given by $X \mapsto -X$?
- 7. (Lee 1-5) Let N = (0, 0, ..., 0, 1) be the "north pole" in $S^n \subset \mathbb{R}^{n+1}$, and let S = -N be the "south pole." Define stereographic projection $\sigma : S^n \setminus \{N\} \to \mathbb{R}^n$ by

$$\sigma(x_1,\ldots,x_{n+1}) = \frac{(x_1,\ldots,x_n)}{1-x_{n+1}}.$$

Let $\tilde{\sigma}(x) = -\sigma(-x)$ for $x \in S^n \setminus \{S\}$.

- (a) For any $x \in S^n \setminus \{N\}$, show that $\sigma(x)$ is the point where the line through N and x intersects the linear subspace where $x_{n+1} = 0$ (identified) with \mathbb{R}^n in the obvious way). Similarly, show that $\tilde{\sigma}(x)$ is the point where the line through S and x intersects the same subspace.
- (b) Show that σ is bijective and

$$\sigma^{-1}(u_1,\ldots,u_n) = \frac{(2u_1,\ldots,2u_n,\|u\|^2 - 1)}{\|u\|^2 + 1}$$

- (c) Compute the transition map $\tilde{\sigma} \circ \sigma^{-1}$ and verify that the atlas $\mathcal{A}_{\text{stereo}} = \{(S^n \setminus \{N\}, \sigma), (S^n \setminus \{S\}, \tilde{\sigma})\}$ defines a smooth structure on S^n .
- (d) Is the smooth structure generated by $\mathcal{A}_{\text{stereo}}$ the same as that generated by $\mathcal{A}_{\text{hem}} = \{(U_i^{\pm}, \phi_i^{\pm})\}_{i=1}^{n+1}$, the atlas constructed in class?
- 8. Let M be a smooth *n*-manifold with differentiable structure \mathcal{U} . We say that M is *orientable* (with respect to \mathcal{U}) if there is an atlas $\mathcal{A} = \{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in J} \subset \mathcal{U}$ so that for each $\alpha, \beta \in J$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$ the differential

$$(\phi_{\beta} \circ \phi_{\alpha}^{-1})_* : T_{\phi_{\alpha}(p)} \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to T_{\phi_{\beta}(p)} \phi_{\beta}(U_{\alpha} \cap U_{\beta})$$

has positive determinant for all $p \in U_{\alpha} \cap U_{\beta}$. Otherwise, we say M is non-orientable.

- (a) Show that S^n with the usual differentiable structure is orientable.
- (b) Show that for any smooth manifold M, its tangent bundle TM equipped with the usual differentiable structure is orientable.