Math 102 Foundations of Smooth Manifolds Fall 2011 Assignment 1 Due October 5, 2011

• Part A: Boothby Chp. III: 1.1, 1.3, 2.2, 2.3, 2.9, 3.3, 3.4 & 3.6

• Part B:

- 1. Let V be an n-dimensional real vector space and let $\operatorname{Aut}(V)$ be the space of all linear isomorphisms $T: V \to V$. Show that $\operatorname{Aut}(V)$ is a topological manifold of dimension n^2 .
- 2. Let G be a topological Lie group and M a topological n-manifold. A continuous action of G on M is a continuous map $\Theta : G \times M \to M$ such that (1) $\Theta(e, p) = p$ for any $p \in M$; (2) $\Theta(g_1 \cdot g_2, p) = \Theta(g_1, \Theta(g_2, p))$ for any $g_1, g_2, \in G$ and $p \in M$. Sometimes we write $g \cdot p = \Theta(g, p)$. Please answer the following questions concerning continuous Lie group actions.
 - (a) The standard action of $\operatorname{Aut}(V)$ on V is given by $(T, v) \mapsto T(v)$. Show that this defines a continuous group action, where V has the usual topology.
 - (b) Let G be a topological Lie group and V a finite dimensional real vector space (with the usual topology). A real representation of G on V is a continuous group homomorphism $\rho: G \to \operatorname{Aut}(V)$. Any real representation (V, ρ) of G on V defines an action $\Theta: G \times V \to V$ given by $\Theta(g, v) = \rho(g)v$. Show that $\rho: G \to \operatorname{Aut}(V)$ is a representation if and only if Θ is a continuous group action such that $\Theta_q \equiv \Theta(g, \cdot) \in \operatorname{Aut}(V)$ for each $g \in G$.
 - (c) Given a real representation (V, ρ) of a topological group G, a subspace $W \leq V$ is said to be *G*-invariant if $\rho(g)(W) \subset W$ for each $g \in G$. (V, ρ) is said to be irreducible if the only *G*invariant subspaces of V are the trivial space and V itself. Show that if G is a finite topological Lie group, then every finite dimensional real representation (V, ρ) can be expressed as a direct sum $V = W_1 \oplus \cdots \oplus W_k$, where each W_j is *G*-invariant. (**Hint:** Construct a *G*-invariant inner product on V.)