Math 101 Fall 2013 MidTerm Due Friday, October 25, 2013

Instructions: You are allowed to use your lecture notes and a textbook of your choice (either Lang or one of the other texts on reserve). No other resources are allowed - animate or inanimate - with the one exception that you can ask me for clarification. Monitor the web page for corrections and typos.

If you are not using $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$, then use one side of the paper only and start each problem on a separate page.

Unless stated otherwise, R denotes a (possibly noncommutative) ring with identity. Ideal always means two-sided ideal.

1. (12) Let R be a PID. Let $\left\{r_{1}, \ldots, r_{k}\right\} \subset R \backslash\{0\}$. We say that d is a $\operatorname{gcd}\left\{r_{1}, \ldots, r_{k}\right\}$ if $d \mid r_{i}$ for all i and if $c \mid r_{i}$ for all i, then $c \mid d$. Similarly, we say m is a $\operatorname{lcm}\left\{r_{1}, \ldots, r_{k}\right\}$ if $r_{i} \mid m$ for all i and if $r_{i} \mid c$ for all i then $m \mid c$. (When it exists, we call d "the" greatest common divisor and m "the" least common multiple. We'll assume it is clear that if d and m exist, then they are unique up to associates.)
(a) Show that $\left(r_{1}, \ldots, r_{k}\right)=\operatorname{gcd}\left\{r_{1}, \ldots, r_{k}\right\}$. In particular, gcd's always exist in PIDs.
(b) Similarly, show that $\operatorname{lcm}\left\{r_{1}, \ldots, r_{k}\right\}$ exists.
(c) Prove that if $(a, b)=1$ and if $a \mid b c$, then $a \mid c$.
(d) Let M be a torsion module over R such that $M=M_{1} \oplus \cdots \oplus M_{k}$. Let the exponent of M_{i} be r_{i}. Show that the exponent of M is $\operatorname{lcm}\left\{r_{1}, \ldots, r_{k}\right\}$.
2. (10) List the possible isomorphism classes of abelian groups of order $144=9 \times 16$. Show both the invariant factor decomposition and the elementary divisor decomposition for each class.
3. (10) Let $V=V_{1} \oplus \cdots \oplus V_{r}$ be a decomposition of a vector space over a field F into a direct sum of subspaces. Let β_{i} be a basis for each V_{i}. Show that $\beta=\bigcup_{i} \beta_{i}$ is a basis for V.
4. (20) Find all rational and Jordan canonical forms of a matrix A in $M_{5}(\mathbf{C})$ with minimal polynomial $m_{A}(x)=x^{2}(x-2)$. Be sure to give the corresponding invariants and the characteristic polynomial $c_{A}(x)$.
5. (20) Let $0 \longrightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{\pi} M^{\prime \prime} \longrightarrow 0$ be a short exact sequence of R-modules.
(a) If M^{\prime} and $M^{\prime \prime}$ are finitely generated, must M be finitely generated?
(b) If M is finitely generated, must M^{\prime} or $M^{\prime \prime}$ be finitely generated?
(c) If M^{\prime} and $M^{\prime \prime}$ are free, must M be free?
(d) If M is free, must M^{\prime} or $M^{\prime \prime}$ be free? What if R is a PID?
6. (16) Let V be a finite-dimensional real vector space and $T \in \operatorname{hom}_{\mathbf{R}}(V, V)$ a linear transformation such that $T^{2}=-I$. Show that the dimension of V must be even, say equal to $2 r$, and that there is a basis β for V such that

$$
[T]_{\beta}^{\beta}=\left(\begin{array}{rr}
0 & -I_{r} \\
I_{r} & 0
\end{array}\right)
$$

where, of course, I_{r} is the $r \times r$-identity matrix.
7. (12) An ideal I in a ring R is called nilpotent if $I^{n}=\{0\}$ for some n. (For example, consider $p \mathbf{Z} / p^{k} \mathbf{Z}$ in $\mathbf{Z} / p^{k} \mathbf{Z}$.) Show that if I is a nilpotent ideal in R and if $\phi: M \rightarrow N$ is an R-module map such that the induced map $\bar{\phi}: M /(I \cdot M) \rightarrow N /(I \cdot N)$ is surjective, then ϕ is surjective.

