
Math 101 Fall 2013

MidTerm

Due Friday, October 25, 2013

Instructions: You are allowed to use your lecture notes and a textbook of your choice
(either Lang or one of the other texts on reserve). No other resources are allowed — animate
or inanimate — with the one exception that you can ask me for clarification. Monitor the
web page for corrections and typos.

If you are not using LATEX, then use one side of the paper only and start each problem
on a separate page.

Unless stated otherwise, R denotes a (possibly noncommutative) ring with identity. Ideal
always means two-sided ideal.

1. (12) Let R be a PID. Let {r1, . . . , rk} ⊂ R \ {0}. We say that d is a gcd{r1, . . . , rk} if
d | ri for all i and if c | ri for all i, then c | d. Similarly, we say m is a lcm{r1, . . . , rk} if ri | m
for all i and if ri | c for all i then m | c. (When it exists, we call d “the” greatest common
divisor and m “the” least common multiple. We’ll assume it is clear that if d and m exist,
then they are unique up to associates.)

(a) Show that (r1, . . . , rk) = gcd{r1, . . . , rk}. In particular, gcd’s always exist in PIDs.

(b) Similarly, show that lcm{r1, . . . , rk} exists.

(c) Prove that if (a, b) = 1 and if a | bc, then a | c.

(d) Let M be a torsion module over R such that M = M1 ⊕ · · · ⊕Mk. Let the exponent
of Mi be ri. Show that the exponent of M is lcm{r1, . . . , rk}.

ANS: (a) Let d be the generator of the ideal (r1, . . . , rk). Then each ri is a multiple of d and d | ri
for all i. Moreover, there are elements si such that

d = s1r1 + · · · skrk. (1)

Therefore if c | ri for all i, then it follows from (1) that c | d. Hence d is the gcd as required.
(b) Let m be the generator of the ideal (r1) ∩ · · · ∩ (rk). Then m ∈ (ri), so ri | m for all i. Now

suppose that ri | c for all i. Then c ∈ (ri) for all i. Hence c ∈ (r1) ∩ · · · ∩ (rk) and m | c as required.
Thus m is the lcm.

(c) Since a and b are relatively prime, there are x, y ∈ R such that xa + yb = 1. But then
xac+ ybc = c. Since a divides both xac and ybc, it must divide c.

(d) Let m = lcm{r1, . . . , rk}. Since m | ri, m · Mi = {0}. Hence m · M = {0}. On the other
hand, if r ·M = {0}, then r ·Mi = {0} and r | ri for all i. Hence m | r and m is the exponent of M .

–1–



2. (10) List the possible isomorphism classes of abelian groups of order 144 = 9× 16. Show
both the invariant factor decomposition and the elementary divisor decomposition for each
class.

ANS: Viewed as a Z-module, G is a torsion module who’s exponent must divide 3224. I find it
easier to start with the elementary divisors: there are two possibilities for the 3-primary bit and
five for the 2-primary summand. Hence ten isomorphism classes. I’ll list the elementary divisor
decomposition on the left and its corresponding invariant factor decomposition on the right.

Z9 × Z16
∼= Z144

Z3 × Z3 × Z16
∼= Z48 × Z3

Z9 × Z8 × Z2
∼= Z72 × Z2

Z3 × Z3 × Z8 × Z2
∼= Z24 × Z6

Z9 × Z4 × Z4
∼= Z36 × Z4

Z3 × Z3 × Z4 × Z4
∼= Z12 × Z12

Z9 × Z4 × Z2 × Z2
∼= Z36 × Z2 × Z2

Z3 × Z3 × Z4 × Z2 × Z2
∼= Z12 × Z6 × Z2

Z9 × Z2 × Z2 × Z2 × Z2
∼= Z18 × Z2 × Z2 × Z2

Z3 × Z3 × Z2 × Z2 × Z2 × Z2
∼= Z6 × Z6 × Z2 × Z2.

3. (10) Let V = V1 ⊕ · · · ⊕ Vr be a decomposition of a vector space over a field F into a
direct sum of subspaces. Let βi be a basis for each Vi. Show that β =

⋃

i βi is a basis for V .

ANS: First, I claim that if vi ∈ Vi and 0 = v1 + · · ·+ vr, then each vi = 0. But if 0 = v1 + · · ·+ vr,
then vi =

∑

j 6=i vj . Then vi ∈ Vi ∩
⋂

j 6=i Vj = {0}. Hence vi = 0. This proves the claim.
Since every element if v is a sum v1 + · · · + vk with vi ∈ Vi and βi spans Vi, it is clear that β

spans V . We just have to show that β is linearly independent. Let {w1, . . . , wr} be a finite subset
of β such that there are scalars ri such that r1 · w1 + · · ·+ rs · ws = 0. But then

0 =

r
∑

i=1

(

∑

wk∈βi

rk · wk

)

.

Since
∑

wk∈βi
rk ·wk ∈ Vi and since βi is a basis Vi, we must have

∑

wk∈βi
rk ·wk = 0 by the claim.

But then rk = 0 for all rk such that wk ∈ βi. But then all the rk are zero. This shows that β is
linearly independent as required.

4. (20) Find all rational and Jordan canonical forms of a matrix A in M5(C) with mini-
mal polynomial mA(x) = x2(x − 2). Be sure to give the corresponding invariants and the
characteristic polynomial cA(x).

ANS: Since cA(x) must have degree 5, be divisible by mA(x) and must factor into linear factors
consisting of both x and x − 2, there are three possibilities for the characteristic polynomial: (I)
x4(x− 2), (II) x3(x+ 1)2 and (III) x2(x− 2)3.
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Case (I): Here the possible invariant factor decompositions are {x2(x − 2), x2} and {x2(x −
2), x, x}. Since x2(x− 2) = x3 − 2x2, the companion matrix of mA is





0 0 0
1 0 0
0 1 2



 .

The companion matrix of x2 is
(

0 0
1 0

)

.

Hence corresponding rational canonical forms, RA, rational Jordan forms, JA are given, respectively,
by the 5× 5 matrices

RA =

















0 0 0
1 0 0
0 1 2



 0

0

(

0 0
1 0

)













JA =













(2) 0 0

0

(

0 0
1 0

)

0

0 0

(

0 0
1 0

)













in the case the invariant factors are {x2(x − 2), x2} and the elementary divisors by {x − 2, x2, x2}.
In the case the invariant factors are {x2(x+ 1), x, x}, then elementary divisors are {x− 2, x2, x, x}.
In the case,

RA =













0 0 0
1 0 0
0 1 2



 0

0 0









and JA =









2 0 0

0

(

0 0
1 0

)

0

0 0 0









.

Case II: Here the invariant factors must be {x2(x − 2), x(x − 2)} = {x3 − 2x2, x2 − 2x} with
elementary divisors {(x− 2), (x− 2), x2, x}. Then

RA =

















0 0 0
1 0 0
0 1 2



 0

0

(

0 0
1 2

)













and JA =













(

0 0
1 0

)

0 0 0

0 0 0 0
0 0 2 0
0 0 0 2













Case III: In this case, the invariant factors must be {x2(x − 2), x − 2, x − 2} with elementary
divisors {x− 2, x− 2, x− 2, x2 }. Hence

RA =

















0 0 0
1 0 0
0 1 2



 0 0

0 2 0
0 0 2













and JA =













(

0 0
1 0

)

0 0 0

0 2 0 0
0 0 2 0
0 0 0 2













5. (20) Let 0 // M ′ i
// M π

// M ′′
// 0 be a short exact sequence of R-modules.
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(a) If M ′ and M ′′ are finitely generated, must M be finitely generated?

(b) If M is finitely generated, must M ′ or M ′′ be finitely generated?

(c) If M ′ and M ′′ are free, must M be free?

(d) If M is free, must M ′ or M ′′ be free? What if R is a PID?

ANS: (a) Yes. Let {m′′
1 , . . . ,m

′′
k} be generators for M ′′ and {m′

1, . . . ,m
′
l} be generators for M ′.

Let mi be such that π(mi) = m′′
i . Then I claim {i(m′

1), . . . , i(m
′
l),m1, . . . ,mk} generate M . Let

m ∈ M . There are ri such that π(m) = r1 ·m
′′
1 + · · ·+ rk ·m

′′
k . Them m− (r1 ·m1 + · · · rk ·mk) is in

the kernel of π. Hence there are si such that i(s1 ·m
′
1 + · · ·+ sl ·m

′
l) = m− (r1 ·m1 + · · · rk ·mk).

But then m = r1 ·m1 + · · · rk ·mk + s1 · i(m
′
1) + · · · sl · i(ml).

(b) As we saw on homework, submodules of finitely generated modules need not be finitely
generated. So M ′ need not be finitely generated. However the image of any generating set in M is
clearly a generating set for M ′′, so M ′′ must be finitely generated.

(c) Yes. If M ′′ is free then it is projective and the identity map idM ′′ : M ′′ → M ′′ must lift to a
map s : M ′′ → M such that π ◦ s = idM ′′ . That is, π must have a section and M ∼= M ′ ⊕M ′′. It is
simple matter to see that the direct sum of free modules is free: for example, let B′ be a basis for M ′

and B′′ a basis for M ′′. Then as in problem 3, B = B′ ⊕ B′′ is a basis for M (with an appropriate
interpretation of B′ ⊕B′′).

(d) Every module is the surjective image of a free module, so M ′′ need not be free — whether or
not R is a PID. If R is not a PID, then we saw in lecture that submodules of finitely generated modules
need not be finitely generated. Hence M ′ need not be finitely generated in general. (Examples
include Z2 viewed as a ideal (and hence a submodule) of Z4 over itself. Also we saw that the ideal
(s, x) ⊂ Z[x] was not free over Z[x].) But if R is a PID, then we proved that submodules of free
modules are always free. So in this case, M ′ would be finitely generated too.

6. (16) Let V be a finite-dimensional real vector space and T ∈ homR(V, V ) a linear trans-
formation such that T 2 = −I. Show that the dimension of V must be even, say equal to 2r,
and that there is a basis β for V such that

[T ]ββ =

(

0 −Ir
Ir 0

)

where, of course, Ir is the r × r-identity matrix.

ANS: Clearly p(x) = x2+1 annihilates T . Since p(x) is irreducible over R, it must be the minimal
polynomial. Hence the characteristic polynomial must be of the form cT (x) = (x2 + 1)r for r ≥ 1.
Then dimV = 2r and dimV is even as claimed. Furthermore the only possible invariant factor
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decomposition of VT is {x2 + 1, . . . , x2 + 1}. Hence there is a basis α = {v1, w1, v2, w2, . . . , vr, wr}
such that

[T ]αα =























(

0 −1
1 0

)

0 0 0

0

(

0 −1
1 0

)

0 0

0 0
. . . 0

0 0 0

(

0 −1
1 0

)























is the rational canonical form of T . Let β = {v1, . . . , vr, w1, . . . wr}. Then since T (vi) = wi and

T (wi) = −vi, [T ]
β
β has the required form.

7. (12) An ideal I in a ring R is called nilpotent if In = {0} for some n. (For example,
consider pZ/pkZ in Z/pkZ.) Show that if I is a nilpotent ideal in R and if φ : M → N is an
R-module map such that the induced map φ̄ : M/(I ·M) → N/(I ·N) is surjective, then φ
is surjective.

ANS: We start with a little lemma (which does not require I to be nilpotent). Note that if J is
any ideal in R, then φ(J ·M) ⊂ J ·N and we get an induced map φ̄J : M/J ·M → N/J ·N .

Lemma. Suppose that M and N are R modules and I an ideal in R. Let φ : M → N be a module map such

that the induced map φ̄Ik : M/Ik ·M → N/Ik ·N is surjective. Then the induced map φ̄Ik+1 : M/Ik+1 ·M →
Ik+1 ·N is surjective.

Proof of Lemma. Let n ∈ N . Then by assumption there is a m ∈ M such that φ(m) + Ik ·N = n+ Ik ·N .
Hence we have ri ∈ Ik and ni ∈ N such that

φ(m)− n = r1 · n1 + · · · rl · nl.

Similarly, there are mi ∈ M such that φ(mi)− ni ∈ Ik ·N . But then φ(ri ·mi)− ri · ni ∈ Ik+1 ·N . Then

φ(m+ r1 ·m1 + · · ·+ rl ·ml)− n =
∑

i

φ(ri ·mi)− ri · ni ∈ Ik+1 ·N.

Thus φ̄Ik+1(m+
∑

i ri ·mi + Ik+1 ·M) = n+ Ik+1 ·N , and φ̄Ik+1 is surjective.

Since we are given that φ̄I is surjective, and induction argument implies that φ̄Ik is surjective
for all k. But if I is nilpotent, then φ̄In = φ for large n. This completes the proof.
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