Math 101 Fall 2013 MidTerm Due Friday, October 25, 2013

Instructions: You are allowed to use your lecture notes and a textbook of your choice (either Lang or one of the other texts on reserve). No other resources are allowed - animate or inanimate - with the one exception that you can ask me for clarification. Monitor the web page for corrections and typos.

If you are not using $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$, then use one side of the paper only and start each problem on a separate page.

Unless stated otherwise, R denotes a (possibly noncommutative) ring with identity. Ideal always means two-sided ideal.

1. (12) Let R be a PID. Let $\left\{r_{1}, \ldots, r_{k}\right\} \subset R \backslash\{0\}$. We say that d is a $\operatorname{gcd}\left\{r_{1}, \ldots, r_{k}\right\}$ if $d \mid r_{i}$ for all i and if $c \mid r_{i}$ for all i, then $c \mid d$. Similarly, we say m is a $\operatorname{lcm}\left\{r_{1}, \ldots, r_{k}\right\}$ if $r_{i} \mid m$ for all i and if $r_{i} \mid c$ for all i then $m \mid c$. (When it exists, we call d "the" greatest common divisor and m "the" least common multiple. We'll assume it is clear that if d and m exist, then they are unique up to associates.)
(a) Show that $\left(r_{1}, \ldots, r_{k}\right)=\operatorname{gcd}\left\{r_{1}, \ldots, r_{k}\right\}$. In particular, gcd's always exist in PIDs.
(b) Similarly, show that $\operatorname{lcm}\left\{r_{1}, \ldots, r_{k}\right\}$ exists.
(c) Prove that if $(a, b)=1$ and if $a \mid b c$, then $a \mid c$.
(d) Let M be a torsion module over R such that $M=M_{1} \oplus \cdots \oplus M_{k}$. Let the exponent of M_{i} be r_{i}. Show that the exponent of M is $\operatorname{lcm}\left\{r_{1}, \ldots, r_{k}\right\}$.
ANS: (a) Let d be the generator of the ideal $\left(r_{1}, \ldots, r_{k}\right)$. Then each r_{i} is a multiple of d and $d \mid r_{i}$ for all i. Moreover, there are elements s_{i} such that

$$
\begin{equation*}
d=s_{1} r_{1}+\cdots s_{k} r_{k} \tag{1}
\end{equation*}
$$

Therefore if $c \mid r_{i}$ for all i, then it follows from (1) that $c \mid d$. Hence d is the gcd as required.
(b) Let m be the generator of the ideal $\left(r_{1}\right) \cap \cdots \cap\left(r_{k}\right)$. Then $m \in\left(r_{i}\right)$, so $r_{i} \mid m$ for all i. Now suppose that $r_{i} \mid c$ for all i. Then $c \in\left(r_{i}\right)$ for all i. Hence $c \in\left(r_{1}\right) \cap \cdots \cap\left(r_{k}\right)$ and $m \mid c$ as required. Thus m is the lcm .
(c) Since a and b are relatively prime, there are $x, y \in R$ such that $x a+y b=1$. But then $x a c+y b c=c$. Since a divides both $x a c$ and $y b c$, it must divide c.
(d) Let $m=\operatorname{lcm}\left\{r_{1}, \ldots, r_{k}\right\}$. Since $m \mid r_{i}, m \cdot M_{i}=\{0\}$. Hence $m \cdot M=\{0\}$. On the other hand, if $r \cdot M=\{0\}$, then $r \cdot M_{i}=\{0\}$ and $r \mid r_{i}$ for all i. Hence $m \mid r$ and m is the exponent of M.
2. (10) List the possible isomorphism classes of abelian groups of order $144=9 \times 16$. Show both the invariant factor decomposition and the elementary divisor decomposition for each class.

ANS: Viewed as a Z-module, G is a torsion module who's exponent must divide $3^{2} 2^{4}$. I find it easier to start with the elementary divisors: there are two possibilities for the 3-primary bit and five for the 2 -primary summand. Hence ten isomorphism classes. I'll list the elementary divisor decomposition on the left and its corresponding invariant factor decomposition on the right.

$$
\begin{aligned}
\mathbf{Z}_{9} \times \mathbf{Z}_{16} \cong \mathbf{Z}_{144} \\
\mathbf{Z}_{3} \times \mathbf{Z}_{3} \times \mathbf{Z}_{16} \cong \mathbf{Z}_{48} \times \mathbf{Z}_{3} \\
\mathbf{Z}_{9} \times \mathbf{Z}_{8} \times \mathbf{Z}_{2} \cong \mathbf{Z}_{72} \times \mathbf{Z}_{2} \\
\mathbf{Z}_{3} \times \mathbf{Z}_{3} \times \mathbf{Z}_{8} \times \mathbf{Z}_{2} \cong \mathbf{Z}_{24} \times \mathbf{Z}_{6} \\
\mathbf{Z}_{9} \times \mathbf{Z}_{4} \times \mathbf{Z}_{4} \cong \mathbf{Z}_{36} \times \mathbf{Z}_{4} \\
\mathbf{Z}_{3} \times \mathbf{Z}_{3} \times \mathbf{Z}_{4} \times \mathbf{Z}_{4} \cong \mathbf{Z}_{12} \times \mathbf{Z}_{12} \\
\mathbf{Z}_{9} \times \mathbf{Z}_{4} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \cong \mathbf{Z}_{36} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \\
\mathbf{Z}_{3} \times \mathbf{Z}_{3} \times \mathbf{Z}_{4} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \cong \mathbf{Z}_{12} \times \mathbf{Z}_{6} \times \mathbf{Z}_{2} \\
\mathbf{Z}_{9} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \cong \mathbf{Z}_{18} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \\
\mathbf{Z}_{3} \times \mathbf{Z}_{3} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \cong \mathbf{Z}_{6} \times \mathbf{Z}_{6} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} .
\end{aligned}
$$

3. (10) Let $V=V_{1} \oplus \cdots \oplus V_{r}$ be a decomposition of a vector space over a field F into a direct sum of subspaces. Let β_{i} be a basis for each V_{i}. Show that $\beta=\bigcup_{i} \beta_{i}$ is a basis for V.

ANS: First, I claim that if $v_{i} \in V_{i}$ and $0=v_{1}+\cdots+v_{r}$, then each $v_{i}=0$. But if $0=v_{1}+\cdots+v_{r}$, then $v_{i}=\sum_{j \neq i} v_{j}$. Then $v_{i} \in V_{i} \cap \bigcap_{j \neq i} V_{j}=\{0\}$. Hence $v_{i}=0$. This proves the claim.

Since every element if v is a sum $v_{1}+\cdots+v_{k}$ with $v_{i} \in V_{i}$ and β_{i} spans V_{i}, it is clear that β spans V. We just have to show that β is linearly independent. Let $\left\{w_{1}, \ldots, w_{r}\right\}$ be a finite subset of β such that there are scalars r_{i} such that $r_{1} \cdot w_{1}+\cdots+r_{s} \cdot w_{s}=0$. But then

$$
0=\sum_{i=1}^{r}\left(\sum_{w_{k} \in \beta_{i}} r_{k} \cdot w_{k}\right) .
$$

Since $\sum_{w_{k} \in \beta_{i}} r_{k} \cdot w_{k} \in V_{i}$ and since β_{i} is a basis V_{i}, we must have $\sum_{w_{k} \in \beta_{i}} r_{k} \cdot w_{k}=0$ by the claim. But then $r_{k}=0$ for all r_{k} such that $w_{k} \in \beta_{i}$. But then all the r_{k} are zero. This shows that β is linearly independent as required.
4. (20) Find all rational and Jordan canonical forms of a matrix A in $M_{5}(\mathbf{C})$ with minimal polynomial $m_{A}(x)=x^{2}(x-2)$. Be sure to give the corresponding invariants and the characteristic polynomial $c_{A}(x)$.

ANS: Since $c_{A}(x)$ must have degree 5 , be divisible by $m_{A}(x)$ and must factor into linear factors consisting of both x and $x-2$, there are three possibilities for the characteristic polynomial: (I) $x^{4}(x-2)$, (II) $x^{3}(x+1)^{2}$ and (III) $x^{2}(x-2)^{3}$.

Case (I): Here the possible invariant factor decompositions are $\left\{x^{2}(x-2), x^{2}\right\}$ and $\left\{x^{2}(x-\right.$ $2), x, x\}$. Since $x^{2}(x-2)=x^{3}-2 x^{2}$, the companion matrix of m_{A} is

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right) .
$$

The companion matrix of x^{2} is

$$
\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Hence corresponding rational canonical forms, R_{A}, rational Jordan forms, J_{A} are given, respectively, by the 5×5 matrices

$$
R_{A}=\left[\begin{array}{cc}
\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right) & \begin{array}{cc}
0 \\
& 0
\end{array} \\
\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{array}\right] \quad J_{A}=\left[\begin{array}{ccc}
(2) & 0 & 0 \\
0 & \left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) & 0 \\
0 & 0 & \left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{array}\right]
$$

in the case the invariant factors are $\left\{x^{2}(x-2), x^{2}\right\}$ and the elementary divisors by $\left\{x-2, x^{2}, x^{2}\right\}$. In the case the invariant factors are $\left\{x^{2}(x+1), x, x\right\}$, then elementary divisors are $\left\{x-2, x^{2}, x, x\right\}$. In the case,

$$
R_{A}=\left[\begin{array}{ccc}
\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right) & 0 \\
& 0 &
\end{array}\right] \quad \text { and } \quad J_{A}=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & \left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Case II: Here the invariant factors must be $\left\{x^{2}(x-2), x(x-2)\right\}=\left\{x^{3}-2 x^{2}, x^{2}-2 x\right\}$ with elementary divisors $\left\{(x-2),(x-2), x^{2}, x\right\}$. Then

$$
R_{A}=\left[\begin{array}{cc}
\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right) & \begin{array}{cc}
0 \\
& 0
\end{array}
\end{array} \begin{array}{l}
\left(\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right)
\end{array}\right] \text { and } J_{A}=\left[\begin{array}{cccc}
\left(\begin{array}{llll}
0 & 0 \\
1 & 0
\end{array}\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

Case III: In this case, the invariant factors must be $\left\{x^{2}(x-2), x-2, x-2\right\}$ with elementary divisors $\left\{x-2, x-2, x-2, x^{2}\right\}$. Hence

$$
R_{A}=\left[\begin{array}{ccc}
\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right) & 0 & 0 \\
& 0 & \\
& 2 & 0 \\
& 0 & 0
\end{array}\right) \quad \text { and } J_{A}=\left[\begin{array}{ccccc}
\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

5. (20) Let $0 \longrightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{\pi} M^{\prime \prime} \longrightarrow 0$ be a short exact sequence of R-modules.
(a) If M^{\prime} and $M^{\prime \prime}$ are finitely generated, must M be finitely generated?
(b) If M is finitely generated, must M^{\prime} or $M^{\prime \prime}$ be finitely generated?
(c) If M^{\prime} and $M^{\prime \prime}$ are free, must M be free?
(d) If M is free, must M^{\prime} or $M^{\prime \prime}$ be free? What if R is a PID?

ANS: (a) Yes. Let $\left\{m_{1}^{\prime \prime}, \ldots, m_{k}^{\prime \prime}\right\}$ be generators for $M^{\prime \prime}$ and $\left\{m_{1}^{\prime}, \ldots, m_{l}^{\prime}\right\}$ be generators for M^{\prime}. Let m_{i} be such that $\pi\left(m_{i}\right)=m_{i}^{\prime \prime}$. Then I claim $\left\{i\left(m_{1}^{\prime}\right), \ldots, i\left(m_{l}^{\prime}\right), m_{1}, \ldots, m_{k}\right\}$ generate M. Let $m \in M$. There are r_{i} such that $\pi(m)=r_{1} \cdot m_{1}^{\prime \prime}+\cdots+r_{k} \cdot m_{k}^{\prime \prime}$. Them $m-\left(r_{1} \cdot m_{1}+\cdots r_{k} \cdot m_{k}\right)$ is in the kernel of π. Hence there are s_{i} such that $i\left(s_{1} \cdot m_{1}^{\prime}+\cdots+s_{l} \cdot m_{l}^{\prime}\right)=m-\left(r_{1} \cdot m_{1}+\cdots r_{k} \cdot m_{k}\right)$. But then $m=r_{1} \cdot m_{1}+\cdots r_{k} \cdot m_{k}+s_{1} \cdot i\left(m_{1}^{\prime}\right)+\cdots s_{l} \cdot i\left(m_{l}\right)$.
(b) As we saw on homework, submodules of finitely generated modules need not be finitely generated. So M^{\prime} need not be finitely generated. However the image of any generating set in M is clearly a generating set for $M^{\prime \prime}$, so $M^{\prime \prime}$ must be finitely generated.
(c) Yes. If $M^{\prime \prime}$ is free then it is projective and the identity map $\operatorname{id}_{M^{\prime \prime}}: M^{\prime \prime} \rightarrow M^{\prime \prime}$ must lift to a map $s: M^{\prime \prime} \rightarrow M$ such that $\pi \circ s=\operatorname{id}_{M^{\prime \prime}}$. That is, π must have a section and $M \cong M^{\prime} \oplus M^{\prime \prime}$. It is simple matter to see that the direct sum of free modules is free: for example, let B^{\prime} be a basis for M^{\prime} and $B^{\prime \prime}$ a basis for $M^{\prime \prime}$. Then as in problem 3, $B=B^{\prime} \oplus B^{\prime \prime}$ is a basis for M (with an appropriate interpretation of $\left.B^{\prime} \oplus B^{\prime \prime}\right)$.
(d) Every module is the surjective image of a free module, so $M^{\prime \prime}$ need not be free - whether or not R is a PID. If R is not a PID, then we saw in lecture that submodules of finitely generated modules need not be finitely generated. Hence M^{\prime} need not be finitely generated in general. (Examples include \mathbf{Z}_{2} viewed as a ideal (and hence a submodule) of \mathbf{Z}_{4} over itself. Also we saw that the ideal $(s, x) \subset \mathbf{Z}[x]$ was not free over $\mathbf{Z}[x]$.) But if R is a PID, then we proved that submodules of free modules are always free. So in this case, M^{\prime} would be finitely generated too.
6. (16) Let V be a finite-dimensional real vector space and $T \in \operatorname{hom}_{\mathbf{R}}(V, V)$ a linear transformation such that $T^{2}=-I$. Show that the dimension of V must be even, say equal to $2 r$, and that there is a basis β for V such that

$$
[T]_{\beta}^{\beta}=\left(\begin{array}{rr}
0 & -I_{r} \\
I_{r} & 0
\end{array}\right)
$$

where, of course, I_{r} is the $r \times r$-identity matrix.
ANS: Clearly $p(x)=x^{2}+1$ annihilates T. Since $p(x)$ is irreducible over \mathbf{R}, it must be the minimal polynomial. Hence the characteristic polynomial must be of the form $c_{T}(x)=\left(x^{2}+1\right)^{r}$ for $r \geq 1$. Then $\operatorname{dim} V=2 r$ and $\operatorname{dim} V$ is even as claimed. Furthermore the only possible invariant factor
decomposition of V_{T} is $\left\{x^{2}+1, \ldots, x^{2}+1\right\}$. Hence there is a basis $\alpha=\left\{v_{1}, w_{1}, v_{2}, w_{2}, \ldots, v_{r}, w_{r}\right\}$ such that

$$
[T]_{\alpha}^{\alpha}=\left[\begin{array}{cccc}
\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) & 0 & 0 & 0 \\
& 0 & \left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) & 0 \\
0 & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
\end{array}\right]
$$

is the rational canonical form of T. Let $\beta=\left\{v_{1}, \ldots, v_{r}, w_{1}, \ldots w_{r}\right\}$. Then since $T\left(v_{i}\right)=w_{i}$ and $T\left(w_{i}\right)=-v_{i},[T]_{\beta}^{\beta}$ has the required form.
7. (12) An ideal I in a ring R is called nilpotent if $I^{n}=\{0\}$ for some n. (For example, consider $p \mathbf{Z} / p^{k} \mathbf{Z}$ in $\mathbf{Z} / p^{k} \mathbf{Z}$.) Show that if I is a nilpotent ideal in R and if $\phi: M \rightarrow N$ is an R-module map such that the induced map $\bar{\phi}: M /(I \cdot M) \rightarrow N /(I \cdot N)$ is surjective, then ϕ is surjective.

ANS: We start with a little lemma (which does not require I to be nilpotent). Note that if J is any ideal in R, then $\phi(J \cdot M) \subset J \cdot N$ and we get an induced map $\bar{\phi}_{J}: M / J \cdot M \rightarrow N / J \cdot N$.

Lemma. Suppose that M and N are R modules and I an ideal in R. Let $\phi: M \rightarrow N$ be a module map such that the induced map $\bar{\phi}_{I^{k}}: M / I^{k} \cdot M \rightarrow N / I^{k} \cdot N$ is surjective. Then the induced map $\bar{\phi}_{I^{k+1}}: M / I^{k+1} \cdot M \rightarrow$ $I^{k+1} \cdot N$ is surjective.

Proof of Lemma. Let $n \in N$. Then by assumption there is a $m \in M$ such that $\phi(m)+I^{k} \cdot N=n+I^{k} \cdot N$. Hence we have $r_{i} \in I^{k}$ and $n_{i} \in N$ such that

$$
\phi(m)-n=r_{1} \cdot n_{1}+\cdots r_{l} \cdot n_{l}
$$

Similarly, there are $m_{i} \in M$ such that $\phi\left(m_{i}\right)-n_{i} \in I^{k} \cdot N$. But then $\phi\left(r_{i} \cdot m_{i}\right)-r_{i} \cdot n_{i} \in I^{k+1} \cdot N$. Then

$$
\phi\left(m+r_{1} \cdot m_{1}+\cdots+r_{l} \cdot m_{l}\right)-n=\sum_{i} \phi\left(r_{i} \cdot m_{i}\right)-r_{i} \cdot n_{i} \in I^{k+1} \cdot N
$$

Thus $\bar{\phi}_{I^{k+1}}\left(m+\sum_{i} r_{i} \cdot m_{i}+I^{k+1} \cdot M\right)=n+I^{k+1} \cdot N$, and $\bar{\phi}_{I^{k+1}}$ is surjective.
Since we are given that $\bar{\phi}_{I}$ is surjective, and induction argument implies that $\bar{\phi}_{I^{k}}$ is surjective for all k. But if I is nilpotent, then $\bar{\phi}_{I^{n}}=\phi$ for large n. This completes the proof.

