Math 101 Fall 2013
 Homework \#7
 Due Friday, November 15, 2013

1. Let R be a unital subring of E. Show that $E \otimes_{R} R$ is isomorphic to E.
2. Show that $\mathbf{Q} \otimes_{\mathbf{Z}} \mathbf{Q}$ and $\mathbf{Q} \otimes_{\mathbf{Q}} \mathbf{Q}$ are isomorphic. (Show both are vector spaces over \mathbf{Q} of dimension one.)
3. Show that as left \mathbf{R}-modules, $\mathbf{C} \otimes_{\mathbf{R}} \mathbf{C}$ and $\mathbf{C} \otimes_{\mathbf{C}} \mathbf{C}$ are not isomorphic.
4. Recall that for R-modules, we write $\bigoplus_{i \in I} M_{i}$ in place of the coproduct $\coprod_{i \in I} M_{i}$. Then show that tensor products commute with direct sums. That is, show that

$$
N \otimes_{R} \bigoplus_{i \in I} M_{i} \cong \bigoplus_{i \in I} N \otimes_{R} M_{i}
$$

and that an isomorphism is given by $n \otimes\left(m_{i}\right) \mapsto\left(n \otimes m_{i}\right)$. (I suggest using the universal property of the tensor product. What assumptions are you making about R, N and the M_{i} ?)
5. Let A be a finite abelian group of order $p^{\alpha} m$ with $p \nmid m$. Prove that $\mathbf{Z}_{p^{\alpha}} \otimes_{\mathbf{Z}} A$ is isomorphic to the p-Sylow subgroup of A.
6. Recall that if S is a multiplicative subset of a commutative ring R and M is an R module, then we can form the fraction module $S^{-1} M$. Because both share the same universal property, we also observed that $\frac{m}{s} \mapsto \frac{1}{1} \otimes m$ induces an isomorphism of $S^{-1} M$ onto $S^{-1} R \otimes_{R}$ M. Except for part (a), we'll take $R=\mathbf{Z}$ and $S^{-1} R=\mathbf{Q}$ in this problem. But you might want to think about generalizations of parts (b) and (c).
(a) Show that $\frac{1}{s} \otimes m$ is zero in $S^{-1} M \otimes_{R} M$ if and only if there is a $s^{\prime} \in S$ such that $s^{\prime} \cdot m=0$. ("Use the isomorphism Luke.")
(b) Let A be an abelian group. Show that $\mathbf{Q} \otimes_{\mathbf{Z}} A=\{0\}$ if and only if A is torsion.
(c) Recall that if $\phi: M^{\prime} \rightarrow M$ is an R-module map, then we get a homomorphism $1 \otimes \phi$: $N \otimes_{R} M^{\prime} \rightarrow N \otimes_{R} M$ for any right R-module N characterized by $\phi\left(n \otimes m^{\prime}\right)=n \otimes \phi\left(m^{\prime}\right)$. Show that if

$$
1 \longrightarrow A \xrightarrow{i} B \xrightarrow{j} C \longrightarrow 1
$$

is a short exact sequence of abelian groups, then

$$
1 \longrightarrow \mathbf{Q} \otimes_{\mathbf{z}} A \xrightarrow{1 \otimes i} \mathbf{Q} \otimes_{\mathbf{z}} B \xrightarrow{1 \otimes j} \mathbf{Q} \otimes_{\mathbf{Z}} C \longrightarrow 1
$$

is a short exact sequence of vector spaces. (One says that $Q \otimes_{\mathbf{z}}$ _ is exact. And Luke, don't forget)
(d) Is it always true that if M^{\prime} is a submodule of M then $N \otimes_{R} M^{\prime}$ is a submodule of $N \otimes_{R} M$. (That is, if $\iota: M^{\prime} \rightarrow M$ is the inclusion, is $1 \otimes \iota$ necessarily injective?)
7. In question 4, we observed the tensor products commute with direct sums. Do they commute with direct products? Let P be the set of primes in \mathbf{Z} and consider $M=\prod_{p \in P} \mathbf{Z}_{p}$ and our old friend $\mathbf{Q} \otimes_{\mathbf{z}}$.
8. If R is a unital subring of E, then we formally have two meanings for $E \otimes_{R} M$ for an R-module M : we first "extended the scalars from R to E, but we could also consider E as a (E, R)-bimodule and form the (general) tensor product. Explain why these are the same thing.
9. Let $F(S)$ be a free R-module with basis S and let M be an R-module. Show that every element \mathfrak{t} of $F(S) \otimes_{R} M$ has a unique representation in the form

$$
\mathfrak{t}=\sum_{s \in S} s \otimes m_{s},
$$

where only finitely many m_{s} are nonzero. In particular, if $\mathfrak{t}=0$, then all the m_{s} are zero. (If we specialize to the case where S is finite and $F(S)=R^{n}$, every element of $R^{n} \otimes_{R} M$ has a unique representative of the form

$$
\sum_{i=1}^{n} e_{i} \otimes m_{i}
$$

where e_{i} is the usual basis vector and $m_{i} \in M$. We also note that it is critical that S be a basis. The set $S=\left\{s_{1}, s_{2}\right\}=\{(2,0),(0,2)\}$ is Z-linearly independent in \mathbf{Z}^{2}, but $s_{1} \otimes 1+s_{2} \otimes 1=0$ in $\left.\mathbf{Z}^{2} \otimes_{\mathbf{Z}} \mathbf{Z}_{2}.\right)$

