
Math 101 Fall 2013

Homework #7

Due Friday, November 15, 2013

1. Let R be a unital subring of E. Show that E ⊗R R is isomorphic to E.

ANS: The map (s, r) 7→ sr is a R-balanced map of E ×R to E. Hence there is a group homomor-
phism φ : E ⊗R R → E satisfying s ⊗ r 7→ sr. Since these rings are unital, φ is clearly surjective.
But if t =

∑n

i=1
si ⊗ ri is in the kernel of φ, then

∑n

i=1
siri = 0. But then

t =

n
∑

i=1

si ⊗ ri =

n
∑

i=1

srri ⊗ 1 =
(

n
∑

i=1

siri
)

⊗ 1 = 0.

Hence φ is a group isomorphism. It then follows that the two are isomorphic as left E-modules, right
R-modules or even (E,R)-bimodules.
Remark: If E is commutative or if R is in the center of E, then both E and R are R-algebras. In
particular, E ⊗R R has a ring structure and φ is easily seen to be a ring isomorphism.

2. Show that Q⊗Z Q and Q⊗Q Q are isomorphic. (Show both are vector spaces over Q of
dimension one.)

ANS: Both are left Q-modules and hence vector spaces over Q. Hence it suffices to see that they
have the same dimension. But Q⊗Q Q ∼= Q, so it clearly has dimension 1. But if a

b
⊗ c

d
∈ Q⊗Z Q,

then
a

b
⊗

c

d
=

bd

bd

(a

b
⊗

c

d

)

=
1

bd
(a⊗ c) =

ac

bd
(1⊗ 1).

Hence {1⊗ 1} is a spanning set for Q⊗Z Q. This suffices.

3. Show that as left R-modules, C⊗R C and C⊗C C are not isomorphic.

ANS: C ⊗C C ∼= C, which is a two-dimensional real vector space. On the other hand, as a
real vector space, C ∼= R2. Hence C ⊗R C ∼= R2 ⊗R R2 which is isomorphic to R4, which is a
4-dimensional real vector space.

4. Recall that for R-modules, we write
⊕

i∈I Mi in place of the coproduct
∐

i∈I Mi. Then
show that tensor products commute with direct sums. That is, show that

N ⊗R

⊕

i∈I

Mi
∼=

⊕

i∈I

N ⊗R Mi,
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and that an isomorphism is given by n ⊗ (mi) 7→ (n ⊗ mi). (I suggest using the universal
property of the tensor product. What assumptions are you making about R, N and the
Mi?)

ANS: To begin with, we assume that N is a right N -module and that each Mi is a left R-module.
Let i : N ×

⊕

i Mi → N ⊗R

⊕

i Mi be the universal R-balanced map i(n, (mi)) = n⊗ (mi). I claim
j : N×

⊕

i Mi →
⊕

i N⊗RMi is also universal, where j(n, (mi)) = (n⊗mi). Let f : N×
⊕

Mi → A

be an R-balanced map into an abelian group A. Let ik : Mk →
⊕

i Mi be the natural injection.
Then j ◦ ik is an R-balanced map of N ×Mik into A. Hence there is a unique group homomorphism
jk : N ⊗Mik → A such that

N ⊗R Mik

jk

��
N ×Mik

i

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

1×ik

// N ×
⊕

i Mi
f

// A

commutes. Then we can define f̄ :
⊕

i N ⊗R Mi → A by f̄((n⊗mi)) =
∑

i ji(n⊗mi). (This is well
defined only because only finitely many terms are nonzero.) But since f is R-balanced, and hence
additive in its second variable, and since (mi) =

∑

i mi ·ǫi, we see that f(n, (mi)) =
∑

i f(n,mi ·ǫi) =
∑

ji(n,mi). (With the last equality due to the commutativity of the above diagram. That is, the
diagram

⊕

N ⊗R Mi

f̄

��
N ×

⊕

Mi
f

//

j
77♦♦♦♦♦♦♦♦♦♦♦

A

commutes.
Since both i and j are universal, the result follows easily: we get unique group homomorphisms

ī and j̄ such that
⊕

N ⊗R Mi

j̄

��

N ×
⊕

Mi

j
77♦♦♦♦♦♦♦♦♦♦♦

i ''❖❖
❖❖

❖❖
❖❖

❖❖
❖

N ⊗R

⊕

Mi

ī

OO

commutes. Uniqueness forces ī and j̄ to be inverses of one another. In particular, ī(n ⊗ (mi)) =
j(n, (mi)) = (n⊗mi) as required.

Note that if N is a (E,R)-bimodule, then ī is easily seen to be an E-module map. Or if each
Mi is a (R,P )-bimodule, then ī is a right P -module map.
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5. Let A be a finite abelian group of order pαm with p ∤ m. Prove that Zpα⊗ZA is isomorphic
to the p-Sylow subgroup of A.

ANS: Since all the Sylow subgroups of an abelain group are normal and have trivial intersection
with one another, A is the internal direct sum

⊕

i A(pi) where A(pi) is the pi-Sylow subgroup. We
can assume p1 = p. Recall that Zn ⊗Z Zm = {0} if (n,m) = 1. Hence Zpα ⊗Z A ∼= Zpα ⊗A(p). On
the other hand, A(p) ∼=

⊕

k Zpnk with
∑

nk = α. In particular, pα ≥ pnk for all k. But then

Zpα ⊗Z

⊕

Zpnk =
⊕

Zpnk = A(p).

6. Recall that if S is a multiplicative subset of a commutative ring R and M is an R-
module, then we can form the fraction module S−1M . Because both share the same universal
property, we also observed that m

s
7→ 1

1
⊗m induces an isomorphism of S−1M onto S−1R⊗R

M . Except for part (a), we’ll take R = Z and S−1R = Q in this problem. But you might
want to think about generalizations of parts (b) and (c).

(a) Show that 1

s
⊗ m is zero in S−1M ⊗R M if and only if there is a s′ ∈ S such that

s′ ·m = 0. (“Use the isomorphism Luke.”)

(b) Let A be an abelian group. Show that Q⊗Z A = {0} if and only if A is torsion.

(c) Recall that if φ : M ′ → M is an R-module map, then we get a homomorphism 1⊗ φ :
N⊗RM

′ → N⊗RM for any right R-module N characterized by φ(n⊗m′) = n⊗φ(m′).
Show that if

1 // A
i // B

j // C // 1

is a short exact sequence of abelian groups, then

1 // Q⊗Z A
1⊗i // Q⊗Z B

1⊗j // Q⊗Z C // 1

is a short exact sequence of vector spaces. (One says that Q⊗Z is exact. And Luke,
don’t forget . . . .)

(d) Is it always true that if M ′ is a submodule of M then N ⊗R M ′ is a submodule of
N ⊗R M . (That is, if ι : M ′ → M is the inclusion, is 1⊗ ι necessarily injective?)

ANS: (a) In view of the isomorphism above, 1

s
⊗m = 0 if and only if s

m
= 0 in S−1M . But that

means s
m

= 0

1
. But that happens only when there is a s′ ∈ S such that s′ ·m = 0.

(b) If a ∈ A is not a torsion element, then n · a 6= 0 for all n ∈ Z \ {0}. Hence 1 ⊗ a 6= 0 by
part (a). Hence if A is not all torsion, Q⊗Z A 6= {0}.

On the other hand, if A is torsion, then given a ∈ A, there is a n ∈ Z such that n · a = 0. Then
q ⊗ a = 1

n
q ⊗ n · a = 0. That is Q⊗Z A = {0}.
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(c) Note that if t =
∑

qi ⊗ ai ∈ Q⊗A, then there are integers mi and ni such that

t =

k
∑

i=1

mi

ni

⊗ ai =

k
∑

i=1

1

n1 · · ·nk

⊗
n1 · · ·nk

ni

mi · ai =
1

n1 · · ·nk

⊗
(

∑

i

n1 · · ·nk

ni

mi · ai
)

.

But this just says every element in Q⊗Z A can be written in the form 1

s
⊗ a for some integer s and

some a ∈ A. But if 1

s
⊗ a ∈ ker 1⊗ i, then 1

s
⊗ i(a) = 0 in Q⊗Z B. But then part (a) implies that

i(a) = 0. But i injective forces a = 0. Thus 1⊗ i is injective.
Since 1 ⊗ j is clearly surjective, we only have to worry about exactness in the middle. Since

(1 ⊗ j) ◦ (1 ⊗ i) is clearly zero, it is enough to see that the kernel of 1 ⊗ j is in the image of 1 ⊗ i.
But if t ∈ ker 1⊗ j, then by the above we can assume t = 1

s
⊗ b with j(b) = 0. But the there is an a

such that i(a) = b, and (1⊗ i)( 1
s
⊗ a) = 1

s
⊗ b.

(d) See Lecture notes.

7. In question 4, we observed the tensor products commute with direct sums. Do they
commute with direct products? Let P be the set of primes in Z and consider M =

∏

p∈P Zp

and our old friend Q⊗Z .

ANS: We just need to observe that Q⊗Z M 6= {0}.
Note that the element x := (1̄, 1̄, 1̄, . . . ) has infinite order in M . Hence it generates a subgroup

〈x〉 isomorphic to Z. Since, as we now say, Q is flat, we have an injection of Q ∼= Q ⊗Z Z into
Q⊗Z M . In particular, M 6= {0}.

8. If R is a unital subring of E, then we formally have two meanings for E ⊗R M for an
R-module M : we first “extended the scalars from R to E”, but we could also consider E as
a (E,R)-bimodule and form the (general) tensor product. Explain why these are the same
thing.

ANS: Originally, we defined E ⊗R M so that ī : M → E ⊗R M was universal as a R-module
map of M into an E-module L. Let’s show that the full-fledged tensor product E ⊗R M has
the right universal property. But if f : M → L is an R-module map into an E-module L, then
g(s,m) = sf(m) is an R-balanced map into L. Hence there is a E-module map ḡ : E ⊗R M to L

such that ḡ(s⊗m) = sf(m). But then f̄(m) := ḡ(1,m) does the old job. Hence universal nonsense
says they are the same.

9. Let F (S) be a free R-module with basis S and let M be an R-module. Show that every
element t of F (S)⊗R M has a unique representation in the form

t =
∑

s∈S

s⊗ms, (‡)
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where only finitely many ms are nonzero. In particular, if t = 0, then all the ms are zero.
(If we specialize to the case where S is finite and F (S) = Rn, every element of Rn⊗RM has
a unique representative of the form

n
∑

i=1

ei ⊗mi

where ei is the usual basis vector and mi ∈ M . We also note that it is critical that S

be a basis. The set S = {s1, s2} = {(2, 0), (0, 2)} is Z-linearly independent in Z2, but
s1 ⊗ 1 + s2 ⊗ 1 = 0 in Z2 ⊗Z Z2.)

ANS: Note that every element x in F (S) can be written uniquely as
∑

s∈S s ·rs where all by finitely
many rs are zero. Thus x ⊗m =

∑

s ⊗ rs ·m. It now follows that every element t can be written
in the form (‡). The map fs0 : F (S) → R given by sending

∑

s∈S s · rs to rs0 is an R-module map.
Similary the map (x,m) 7→ fs0(x) ·m is an R-balanced map from F (S)×M to M . Hence we get a
map Ss0 : F (S)⊗R M → M that takes t above to ms0 . This implies uniqueness. Thus if t = 0, then
ms = 0 for all s.
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