Math 101 Fall 2013
 Homework \#7
 Due Friday, November 15, 2013

1. Let R be a unital subring of E. Show that $E \otimes_{R} R$ is isomorphic to E.

ANS: The map $(s, r) \mapsto s r$ is a R-balanced map of $E \times R$ to E. Hence there is a group homomorphism $\phi: E \otimes_{R} R \rightarrow E$ satisfying $s \otimes r \mapsto s r$. Since these rings are unital, ϕ is clearly surjective. But if $t=\sum_{i=1}^{n} s_{i} \otimes r_{i}$ is in the kernel of ϕ, then $\sum_{i=1}^{n} s_{i} r_{i}=0$. But then

$$
t=\sum_{i=1}^{n} s_{i} \otimes r_{i}=\sum_{i=1}^{n} s_{r} r_{i} \otimes 1=\left(\sum_{i=1}^{n} s_{i} r_{i}\right) \otimes 1=0 .
$$

Hence ϕ is a group isomorphism. It then follows that the two are isomorphic as left E-modules, right R-modules or even (E, R)-bimodules.
Remark: If E is commutative or if R is in the center of E, then both E and R are R-algebras. In particular, $E \otimes_{R} R$ has a ring structure and ϕ is easily seen to be a ring isomorphism.
2. Show that $\mathbf{Q} \otimes_{\mathbf{z}} \mathbf{Q}$ and $\mathbf{Q} \otimes_{\mathbf{Q}} \mathbf{Q}$ are isomorphic. (Show both are vector spaces over \mathbf{Q} of dimension one.)

ANS: Both are left \mathbf{Q}-modules and hence vector spaces over \mathbf{Q}. Hence it suffices to see that they have the same dimension. But $\mathbf{Q} \otimes_{\mathbf{Q}} \mathbf{Q} \cong \mathbf{Q}$, so it clearly has dimension 1. But if $\frac{a}{b} \otimes \frac{c}{d} \in \mathbf{Q} \otimes_{\mathbf{z}} \mathbf{Q}$, then

$$
\frac{a}{b} \otimes \frac{c}{d}=\frac{b d}{b d}\left(\frac{a}{b} \otimes \frac{c}{d}\right)=\frac{1}{b d}(a \otimes c)=\frac{a c}{b d}(1 \otimes 1) .
$$

Hence $\{1 \otimes 1\}$ is a spanning set for $\mathbf{Q} \otimes_{\mathbf{Z}} \mathbf{Q}$. This suffices.
3. Show that as left \mathbf{R}-modules, $\mathbf{C} \otimes_{\mathbf{R}} \mathbf{C}$ and $\mathbf{C} \otimes_{\mathbf{C}} \mathbf{C}$ are not isomorphic.

ANS: $\mathbf{C} \otimes_{\mathbf{C}} \mathbf{C} \cong \mathbf{C}$, which is a two-dimensional real vector space. On the other hand, as a real vector space, $C \cong \mathbf{R}^{2}$. Hence $\mathbf{C} \otimes_{\mathbf{R}} \mathbf{C} \cong \mathbf{R}^{2} \otimes_{\mathbf{R}} \mathbf{R}^{2}$ which is isomorphic to \mathbf{R}^{4}, which is a 4-dimensional real vector space.
4. Recall that for R-modules, we write $\bigoplus_{i \in I} M_{i}$ in place of the coproduct $\coprod_{i \in I} M_{i}$. Then show that tensor products commute with direct sums. That is, show that

$$
N \otimes_{R} \bigoplus_{i \in I} M_{i} \cong \bigoplus_{i \in I} N \otimes_{R} M_{i},
$$

and that an isomorphism is given by $n \otimes\left(m_{i}\right) \mapsto\left(n \otimes m_{i}\right)$. (I suggest using the universal property of the tensor product. What assumptions are you making about R, N and the M_{i} ?)

ANS: To begin with, we assume that N is a right N-module and that each M_{i} is a left R-module. Let $i: N \times \bigoplus_{i} M_{i} \rightarrow N \otimes_{R} \bigoplus_{i} M_{i}$ be the universal R-balanced map $i\left(n,\left(m_{i}\right)\right)=n \otimes\left(m_{i}\right)$. I claim $j: N \times \bigoplus_{i} M_{i} \rightarrow \bigoplus_{i} N \otimes_{R} M_{i}$ is also universal, where $j\left(n,\left(m_{i}\right)\right)=\left(n \otimes m_{i}\right)$. Let $f: N \times \bigoplus M_{i} \rightarrow A$ be an R-balanced map into an abelian group A. Let $i_{k}: M_{k} \rightarrow \bigoplus_{i} M_{i}$ be the natural injection. Then $j \circ i_{k}$ is an R-balanced map of $N \times M_{i_{k}}$ into A. Hence there is a unique group homomorphism $j_{k}: N \otimes M_{i_{k}} \rightarrow A$ such that

commutes. Then we can define $\bar{f}: \bigoplus_{i} N \otimes_{R} M_{i} \rightarrow A$ by $\bar{f}\left(\left(n \otimes m_{i}\right)\right)=\sum_{i} j_{i}\left(n \otimes m_{i}\right)$. (This is well defined only because only finitely many terms are nonzero.) But since f is R-balanced, and hence additive in its second variable, and since $\left(m_{i}\right)=\sum_{i} m_{i} \cdot \epsilon_{i}$, we see that $f\left(n,\left(m_{i}\right)\right)=\sum_{i} f\left(n, m_{i} \cdot \epsilon_{i}\right)=$ $\sum j_{i}\left(n, m_{i}\right)$. (With the last equality due to the commutativity of the above diagram. That is, the diagram

commutes.
Since both i and j are universal, the result follows easily: we get unique group homomorphisms \bar{i} and \bar{j} such that

commutes. Uniqueness forces \bar{i} and \bar{j} to be inverses of one another. In particular, $\bar{i}\left(n \otimes\left(m_{i}\right)\right)=$ $j\left(n,\left(m_{i}\right)\right)=\left(n \otimes m_{i}\right)$ as required.

Note that if N is a (E, R)-bimodule, then \bar{i} is easily seen to be an E-module map. Or if each M_{i} is a (R, P)-bimodule, then \bar{i} is a right P-module map.
5. Let A be a finite abelian group of order $p^{\alpha} m$ with $p \nmid m$. Prove that $\mathbf{Z}_{p^{\alpha}} \otimes \mathbf{Z} A$ is isomorphic to the p-Sylow subgroup of A.

ANS: Since all the Sylow subgroups of an abelain group are normal and have trivial intersection with one another, A is the internal direct sum $\bigoplus_{i} A\left(p_{i}\right)$ where $A\left(p_{i}\right)$ is the p_{i}-Sylow subgroup. We can assume $p_{1}=p$. Recall that $\mathbf{Z}_{n} \otimes_{\mathbf{Z}} \mathbf{Z}_{m}=\{0\}$ if $(n, m)=1$. Hence $Z_{p^{\alpha}} \otimes_{Z} A \cong \mathbf{Z}_{p^{\alpha}} \otimes A(p)$. On the other hand, $A(p) \cong \bigoplus_{k} \mathbf{Z}_{p^{n_{k}}}$ with $\sum n_{k}=\alpha$. In particular, $p^{\alpha} \geq p^{n_{k}}$ for all k. But then

$$
\mathbf{Z}_{p^{\alpha}} \otimes_{\mathbf{Z}} \bigoplus \mathbf{Z}_{p^{n_{k}}}=\bigoplus \mathbf{Z}_{p^{n_{k}}}=A(p) .
$$

6. Recall that if S is a multiplicative subset of a commutative ring R and M is an R module, then we can form the fraction module $S^{-1} M$. Because both share the same universal property, we also observed that $\frac{m}{s} \mapsto \frac{1}{1} \otimes m$ induces an isomorphism of $S^{-1} M$ onto $S^{-1} R \otimes_{R}$ M. Except for part (a), we'll take $R=\mathbf{Z}$ and $S^{-1} R=\mathbf{Q}$ in this problem. But you might want to think about generalizations of parts (b) and (c).
(a) Show that $\frac{1}{s} \otimes m$ is zero in $S^{-1} M \otimes_{R} M$ if and only if there is a $s^{\prime} \in S$ such that $s^{\prime} \cdot m=0$. ("Use the isomorphism Luke.")
(b) Let A be an abelian group. Show that $\mathbf{Q} \otimes_{\mathbf{z}} A=\{0\}$ if and only if A is torsion.
(c) Recall that if $\phi: M^{\prime} \rightarrow M$ is an R-module map, then we get a homomorphism $1 \otimes \phi$: $N \otimes_{R} M^{\prime} \rightarrow N \otimes_{R} M$ for any right R-module N characterized by $\phi\left(n \otimes m^{\prime}\right)=n \otimes \phi\left(m^{\prime}\right)$. Show that if

$$
1 \longrightarrow A \xrightarrow{i} B \xrightarrow{j} C \longrightarrow 1
$$

is a short exact sequence of abelian groups, then

$$
1 \longrightarrow \mathbf{Q} \otimes_{\mathbf{Z}} A \xrightarrow{1 \otimes i} \mathbf{Q} \otimes_{\mathbf{z}} B \xrightarrow{1 \otimes j} \mathbf{Q} \otimes_{\mathbf{z}} C \longrightarrow 1
$$

is a short exact sequence of vector spaces. (One says that $Q \otimes_{\mathbf{Z}}$ is exact. And Luke, don't forget)
(d) Is it always true that if M^{\prime} is a submodule of M then $N \otimes_{R} M^{\prime}$ is a submodule of $N \otimes_{R} M$. (That is, if $\iota: M^{\prime} \rightarrow M$ is the inclusion, is $1 \otimes \iota$ necessarily injective?)
ANS: (a) In view of the isomorphism above, $\frac{1}{s} \otimes m=0$ if and only if $\frac{s}{m}=0$ in $S^{-1} M$. But that means $\frac{s}{m}=\frac{0}{1}$. But that happens only when there is a $s^{\prime} \in S$ such that $s^{\prime} \cdot m=0$.
(b) If $a \in A$ is not a torsion element, then $n \cdot a \neq 0$ for all $n \in \mathbf{Z} \backslash\{0\}$. Hence $1 \otimes a \neq 0$ by part (a). Hence if A is not all torsion, $\mathbf{Q} \otimes_{\mathbf{z}} A \neq\{0\}$.

On the other hand, if A is torsion, then given $a \in A$, there is a $n \in Z$ such that $n \cdot a=0$. Then $q \otimes a=\frac{1}{n} q \otimes n \cdot a=0$. That is $\mathbf{Q} \otimes_{\mathbf{z}} A=\{0\}$.
(c) Note that if $t=\sum q_{i} \otimes a_{i} \in \mathbf{Q} \otimes A$, then there are integers m_{i} and n_{i} such that

$$
t=\sum_{i=1}^{k} \frac{m_{i}}{n_{i}} \otimes a_{i}=\sum_{i=1}^{k} \frac{1}{n_{1} \cdots n_{k}} \otimes \frac{n_{1} \cdots n_{k}}{n_{i}} m_{i} \cdot a_{i}=\frac{1}{n_{1} \cdots n_{k}} \otimes\left(\sum_{i} \frac{n_{1} \cdots n_{k}}{n_{i}} m_{i} \cdot a_{i}\right)
$$

But this just says every element in $\mathbf{Q} \otimes_{\mathbf{Z}} A$ can be written in the form $\frac{1}{s} \otimes a$ for some integer s and some $a \in A$. But if $\frac{1}{s} \otimes a \in \operatorname{ker} 1 \otimes i$, then $\frac{1}{s} \otimes i(a)=0$ in $\mathbf{Q} \otimes_{\mathbf{z}} B$. But then part (a) implies that $i(a)=0$. But i injective forces $a=0$. Thus $1 \otimes i$ is injective.

Since $1 \otimes j$ is clearly surjective, we only have to worry about exactness in the middle. Since $(1 \otimes j) \circ(1 \otimes i)$ is clearly zero, it is enough to see that the kernel of $1 \otimes j$ is in the image of $1 \otimes i$. But if $t \in \operatorname{ker} 1 \otimes j$, then by the above we can assume $t=\frac{1}{s} \otimes b$ with $j(b)=0$. But the there is an a such that $i(a)=b$, and $(1 \otimes i)\left(\frac{1}{s} \otimes a\right)=\frac{1}{s} \otimes b$.
(d) See Lecture notes.
7. In question 4, we observed the tensor products commute with direct sums. Do they commute with direct products? Let P be the set of primes in \mathbf{Z} and consider $M=\prod_{p \in P} \mathbf{Z}_{p}$ and our old friend $\mathbf{Q} \otimes_{\mathbf{z}}$ _.

ANS: We just need to observe that $\mathbf{Q} \otimes_{\mathbf{Z}} M \neq\{0\}$.
Note that the element $x:=(\overline{1}, \overline{1}, \overline{1}, \ldots)$ has infinite order in M. Hence it generates a subgroup $\langle x\rangle$ isomorphic to \mathbf{Z}. Since, as we now say, \mathbf{Q} is flat, we have an injection of $\mathbf{Q} \cong \mathbf{Q} \otimes_{\mathbf{Z}} \mathbf{Z}$ into $\mathbf{Q} \otimes_{\mathbf{z}} M$. In particular, $M \neq\{0\}$.
8. If R is a unital subring of E, then we formally have two meanings for $E \otimes_{R} M$ for an R-module M : we first "extended the scalars from R to E ", but we could also consider E as a (E, R)-bimodule and form the (general) tensor product. Explain why these are the same thing.

ANS: Originally, we defined $E \otimes_{R} M$ so that $\bar{i}: M \rightarrow E \otimes_{R} M$ was universal as a R-module map of M into an E-module L. Let's show that the full-fledged tensor product $E \otimes_{R} M$ has the right universal property. But if $f: M \rightarrow L$ is an R-module map into an E-module L, then $g(s, m)=s f(m)$ is an R-balanced map into L. Hence there is a E-module map $\bar{g}: E \otimes_{R} M$ to L such that $\bar{g}(s \otimes m)=s f(m)$. But then $\bar{f}(m):=\bar{g}(1, m)$ does the old job. Hence universal nonsense says they are the same.
9. Let $F(S)$ be a free R-module with basis S and let M be an R-module. Show that every element \mathfrak{t} of $F(S) \otimes_{R} M$ has a unique representation in the form

$$
\mathfrak{t}=\sum_{s \in S} s \otimes m_{s}
$$

where only finitely many m_{s} are nonzero. In particular, if $\mathfrak{t}=0$, then all the m_{s} are zero. (If we specialize to the case where S is finite and $F(S)=R^{n}$, every element of $R^{n} \otimes_{R} M$ has a unique representative of the form

$$
\sum_{i=1}^{n} e_{i} \otimes m_{i}
$$

where e_{i} is the usual basis vector and $m_{i} \in M$. We also note that it is critical that S be a basis. The set $S=\left\{s_{1}, s_{2}\right\}=\{(2,0),(0,2)\}$ is Z-linearly independent in \mathbf{Z}^{2}, but $s_{1} \otimes 1+s_{2} \otimes 1=0$ in $\mathbf{Z}^{2} \otimes \mathbf{Z} \mathbf{Z}_{2}$.)

ANS: Note that every element x in $F(S)$ can be written uniquely as $\sum_{s \in S} s \cdot r_{s}$ where all by finitely many r_{s} are zero. Thus $x \otimes m=\sum s \otimes r_{s} \cdot m$. It now follows that every element \mathfrak{t} can be written in the form (\ddagger). The map $f_{s_{0}}: F(S) \rightarrow R$ given by sending $\sum_{s \in S} s \cdot r_{s}$ to $r_{s_{0}}$ is an R-module map. Similary the map $(x, m) \mapsto f_{s_{0}}(x) \cdot m$ is an R-balanced map from $F(S) \times M$ to M. Hence we get a map $S_{s_{0}}: F(S) \otimes_{R} M \rightarrow M$ that takes \mathfrak{t} above to $m_{s_{0}}$. This implies uniqueness. Thus if $\mathfrak{t}=0$, then $m_{s}=0$ for all s.

