Math 101 Fall 2013
 Homework \#6
 Due Wednesday October 30, 2013

1. Prove Cauchy's Theorem: If p is a prime dividing $|G|$, then G contains an element x of order p. (Since $\langle x\rangle$ is a subgroup of G of order p, we also obtain a partial converse to LaGrange's Theorem.)
2. Let H and K be finite subgroups of G.
(a) Prove that

$$
|H K|=\frac{|H||K|}{|H \cap K|}
$$

(Suggestion: show that the number of distinct left K cosets in $H K$ is equal to the index $H \cap K$ in H.)
(b) Show that if $H \subset N_{G}(K)$, then $H K$ is a subgroup of G.
(c) Suppose that $H \triangleleft G, K \triangleleft G$ and $H \cap K=\{1\}$. Show that $H K \cong H \times K$. (Suggestion, if $h \in H$ and $k \in K$, then consider $h k h^{-1} k^{-1}$.)
3. Let F be a finite field and F^{\times}the multiplicative group of units (a.k.a. the nonzero elements). We want to show that F^{\times}is cyclic.
(a) Let $G=\mathbf{Z}_{n_{1}} \times \mathbf{Z}_{n_{2}} \times \cdots \times \mathbf{Z}_{n_{k}}$ be a finite abelian group with $n_{j} \mid n_{j-1}$ for $2 \leq j \leq k$ and $n_{j} \geq 2$. If we view the operation in G as multiplication with identity 1 , how many solutions to $x^{n_{1}}=1$ there are in G ? (If you write the operation in G additively and use 0 for the identity, this is the same as asking how many solutions to $n_{1} \cdot x=0$ are there?)
(b) Use that fact that in $F[x]$ a polynomial of degree n can have at most n zeros to show that F^{\times}must be cyclic as claimed.
4. Suppose that $|G|=p q r$ with $p<q<r$ primes. Let P, Q and R be a p-Sylow subgroup, a q-Sylow subgroup and a r-Sylow subgroup, respectively. Show that at least one of P, Q and R is normal in G.
5. Let $|G|=105$. Suppose that G has a normal 3-Sylow subgroup. Show that $G \cong \mathbf{Z}_{105}$,

