Math 101 Fall 2013
 Homework \#6
 Due Wednesday October 30, 2013

1. Prove Cauchy's Theorem: If p is a prime dividing $|G|$, then G contains an element x of order p. (Since $\langle x\rangle$ is a subgroup of G of order p, we also obtain a partial converse to LaGrange's Theorem.)

ANS: Suppose that $p\left||G|\right.$. Then G has a nontrivial p-Sylow subgroup P. Since P has order p^{α} for $\alpha \geq 1$, any nontrivial element $y \in P$ has order p^{j} for $1 \leq j \leq \alpha$. If $j=1$, then we're done. If not, $x=y^{p^{j-1}}$ will do: clearly $x^{p}=\left(y^{p^{j-1}}\right)^{p}=y^{p^{j}}=1$. On the other hand, if $x^{i}=1$, then $y^{i p^{j-1}}=1$ and $p^{j} \mid i p^{j-1}$. Thus $p \mid i$. In short, $|x|=p$ and we're done.
2. Let H and K be finite subgroups of G.
(a) Prove that

$$
|H K|=\frac{|H||K|}{|H \cap K|}
$$

(Suggestion: show that the number of distinct left K cosets in $H K$ is equal to the index $H \cap K$ in H.)
(b) Show that if $H \subset N_{G}(K)$, then $H K$ is a subgroup of G.
(c) Suppose that $H \triangleleft G, K \triangleleft G$ and $H \cap K=\{1\}$. Show that $H K \cong H \times K$. (Suggestion, if $h \in H$ and $k \in K$, then consider $h k h^{-1} k^{-1}$.)

ANS: (a) Not that $H K=\bigcup_{h \in H} h K$. Furthermore $h_{1} K=h_{2} K$ exactly when $h_{2}^{-1} h_{1} \in K$. Of course, this is equivalent to saying $h_{2}^{-1} h_{1} \in H \cap K$ or that $h_{1} H \cap K=h_{2} H \cap K$. Thus $H K$ consists of $[H: H \cap K]$ many distinct K-cosets. Thus

$$
|H K|=[H: H \cap K] \cdot|K|=\frac{|H|}{|H \cap K|}|K| .
$$

Hence the result.
(b) Since $H \subset N_{G}(K)$, we have $H K \subset K H$. But then

$$
(H K)(H K) \subset K H K \subset H K,
$$

says $H K$ closed under multiplication and

$$
(H K)^{-1}=K H \subset H K
$$

says $H K$ is closed under inversion. Hence $H K$ is a subgroup.
(c) Note that $h k h^{-1} k^{-1} \in H \cap K$. Hence $h k h^{-1} k^{-1}=1$ and $h k=k h$ for any $h \in H$ and $k \in K$. Thus the map $(h, k) \mapsto h k$ is a homomorphism of $H \times K$ onto the subgroup $H K$. But if $h k=1$, then $h=k^{-1} \in H \cap K$. Hence $h=1=k$, and the map is an isomorphism.
3. Let F be a finite field and F^{\times}the multiplicative group of units (a.k.a. the nonzero elements). We want to show that F^{\times}is cyclic.
(a) Let $G=\mathbf{Z}_{n_{1}} \times \mathbf{Z}_{n_{2}} \times \cdots \times \mathbf{Z}_{n_{k}}$ be a finite abelian group with $n_{j} \mid n_{j-1}$ for $2 \leq j \leq k$ and $n_{j} \geq 2$. If we view the operation in G as multiplication with identity 1 , how many solutions to $x^{n_{1}}=1$ there are in G ? (If you write the operation in G additively and use 0 for the identity, this is the same as asking how many solutions to $n_{1} \cdot x=0$ are there?)
(b) Use that fact that in $F[x]$ a polynomial of degree n can have at most n zeros to show that F^{\times}must be cyclic as claimed.

ANS: (a) Considering G as a Z-module with invariant factors n_{i}, we saw (long ago) in lecture that the exponent of G is n_{1}. Hence $n_{1} \cdot x=$ has $|G|=n_{1} n_{2} \cdots n_{k}$ solutions.
(b) Now let $G=F^{\times}$. As an abelian group, it must have an invariant factor decomposition n_{1}, \ldots, n_{k} as above. Therefore, every element of F^{\times}(now thought of multiplicatively) is a solution to $x^{n_{1}}-1$. But over a field, the polynomial $x^{n_{1}-1}$ can have at most n_{1} solutions. Hence $k=1$ and F^{\times}is cyclic.
4. Suppose that $|G|=p q r$ with $p<q<r$ primes. Let P, Q and R be a p-Sylow subgroup, a q-Sylow subgroup and a r-Sylow subgroup, respectively. Show that at least one of P, Q and R is normal in G.

ANS: Suppose $n_{r}>1$. Then $n_{r}=1+k r$ with $k \geq 1$. But we also have $n_{r} \mid p q$. Since n_{r} is greater than p and q, we must have $n_{r}=p q$. On the other hand, if $n_{q}>1$, then $n_{q} \mid p r$ says the only prime factors of n_{q} can be p and r. But $n_{q}>p$, so this forces $n_{q} \geq r$. Finally, $n_{p}>1$ and $n_{p} \mid q r$ forces $n_{p} \geq q$.

Thus G has at least $n_{r}(r-1)$ elements of order r, and $n_{q}(q-1)$ elements of order q and $n_{p}(p-1)$ elements of order p. These are all distinct: all nonidentity elements of a group of prime order are generators. So since we also have $1 \in G$,

$$
\begin{aligned}
p q r=|G| & \leq n_{r}(r-1)+n_{q}(q-1)+n_{p}(p-1) \\
& \leq p q(r-1)+r(q-1)+q(p-1)+1 \\
& \leq p q r-p q+r q-r+p q-q \\
& =p q r+r q-r-q
\end{aligned}
$$

which, since $3 \leq q<r$, is

$$
<p q r+3 r-2 r=|G|+r .
$$

Of course, this is a contradiction.
So at least one of n_{r}, n_{q} or n_{p} is 1 .
Comment: Justin Troyka gave the following clever argument that in fact $R \triangleleft G$. First just counting distinct elements of order r and q, we get

$$
\begin{aligned}
|G| & \leq n_{r}(r-1)+n_{q}(q-1) \\
& \leq p q(r-1)+r(q-1) \\
& \leq p q(r-1)+r p \\
& \leq p q r-p q+r p \\
& >p q r-p q+p q=p q r .
\end{aligned}
$$

This is a contradiction and forces at least one of Q and R to be normal. Suppose to the contrary, $R \nless G$. Then by the above $Q \triangleleft G$ and $Q R$ is a subgroup of index p in G. Hence $Q R$ is normal in G. Since the index of R in $R Q$ is q and since q is the smallest prime dividing $\mid Q R, R$ is normal in $Q R$. But then it is the unique r-Sylow subgroup of $Q R$ and is characteristic in $Q R$. But then, since $Q R \triangleleft G, R$ would be normal in G.
5. Let $|G|=105$. Suppose that G has a normal 3-Sylow subgroup. Show that $G \cong \mathbf{Z}_{105}$, ANS: Let P, Q and R be Sylow subgroups of order 3, 5 and 7, respectively. We have $P \triangleleft G$ by assumption. We know from lecture that $Q \triangleleft G$ and $R \triangleleft G$. Hence $Q R$ is a subgroup by part 2b above. Since $Q \cap R=\{1\},|Q R|=35$ and has no elements of order 3. Hence $P \cap Q R=\{1\}$. Hence $P(Q R)$ is a subgroup of G of order 105 and is equal to G. But by $2 \mathrm{c}, Q R \cong Q \times R$. Since $Q R$ has index 3 , it is normal in G and $G \cong P \times Q R \cong P \times Q \times R$. The latter is cyclic of order 105 .

