
Math 101 Fall 2013

Homework #6

Due Wednesday October 30, 2013

1. Prove Cauchy’s Theorem: If p is a prime dividing |G|, then G contains an element x

of order p. (Since 〈x〉 is a subgroup of G of order p, we also obtain a partial converse to
LaGrange’s Theorem.)

ANS: Suppose that p | |G|. Then G has a nontrivial p-Sylow subgroup P . Since P has order pα

for α ≥ 1, any nontrivial element y ∈ P has order pj for 1 ≤ j ≤ α. If j = 1, then we’re done. If not,
x = yp

j−1

will do: clearly xp = (yp
j−1

)p = yp
j

= 1. On the other hand, if xi = 1, then yip
j−1

= 1
and pj | ipj−1. Thus p | i. In short, |x| = p and we’re done.

2. Let H and K be finite subgroups of G.

(a) Prove that

|HK| =
|H||K|

|H ∩K|
.

(Suggestion: show that the number of distinct left K cosets in HK is equal to the
index H ∩K in H.)

(b) Show that if H ⊂ NG(K), then HK is a subgroup of G.

(c) Suppose that H ⊳ G, K ⊳ G and H∩K = {1}. Show that HK ∼= H×K. (Suggestion,
if h ∈ H and k ∈ K, then consider hkh−1k−1.)

ANS: (a) Not that HK =
⋃

h∈H hK. Furthermore h1K = h2K exactly when h−1

2
h1 ∈ K. Of

course, this is equivalent to saying h−1

2
h1 ∈ H ∩K or that h1H ∩K = h2H ∩K. Thus HK consists

of [H : H ∩K] many distinct K-cosets. Thus

|HK| = [H : H ∩K] · |K| =
|H|

|H ∩K|
|K|.

Hence the result.
(b) Since H ⊂ NG(K), we have HK ⊂ KH. But then

(HK)(HK) ⊂ KHK ⊂ HK,

says HK closed under multiplication and

(HK)−1 = KH ⊂ HK
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says HK is closed under inversion. Hence HK is a subgroup.
(c) Note that hkh−1k−1 ∈ H ∩K. Hence hkh−1k−1 = 1 and hk = kh for any h ∈ H and k ∈ K.

Thus the map (h, k) 7→ hk is a homomorphism of H × K onto the subgroup HK. But if hk = 1,
then h = k−1 ∈ H ∩K. Hence h = 1 = k, and the map is an isomorphism.

3. Let F be a finite field and F× the multiplicative group of units (a.k.a. the nonzero
elements). We want to show that F× is cyclic.

(a) Let G = Zn1
× Zn2

× · · · × Znk
be a finite abelian group with nj | nj−1 for 2 ≤ j ≤ k

and nj ≥ 2. If we view the operation in G as multiplication with identity 1, how many
solutions to xn1 = 1 there are in G? (If you write the operation in G additively and
use 0 for the identity, this is the same as asking how many solutions to n1 · x = 0 are
there?)

(b) Use that fact that in F [x] a polynomial of degree n can have at most n zeros to show
that F× must be cyclic as claimed.

ANS: (a) Considering G as a Z-module with invariant factors ni, we saw (long ago) in lecture that
the exponent of G is n1. Hence n1 · x = has |G| = n1n2 · · ·nk solutions.

(b) Now let G = F×. As an abelian group, it must have an invariant factor decomposition
n1, . . . , nk as above. Therefore, every element of F× (now thought of multiplicatively) is a solution
to xn1 − 1. But over a field, the polynomial xn1−1 can have at most n1 solutions. Hence k = 1 and
F× is cyclic.

4. Suppose that |G| = pqr with p < q < r primes. Let P , Q and R be a p-Sylow subgroup,
a q-Sylow subgroup and a r-Sylow subgroup, respectively. Show that at least one of P , Q
and R is normal in G.

ANS: Suppose nr > 1. Then nr = 1+ kr with k ≥ 1. But we also have nr | pq. Since nr is greater
than p and q, we must have nr = pq. On the other hand, if nq > 1, then nq | pr says the only prime
factors of nq can be p and r. But nq > p, so this forces nq ≥ r. Finally, np > 1 and np | qr forces
np ≥ q.

Thus G has at least nr(r−1) elements of order r, and nq(q−1) elements of order q and np(p−1)
elements of order p. These are all distinct: all nonidentity elements of a group of prime order are
generators. So since we also have 1 ∈ G,

pqr = |G| ≤ nr(r − 1) + nq(q − 1) + np(p− 1)

≤ pq(r − 1) + r(q − 1) + q(p− 1) + 1

≤ pqr − pq + rq − r + pq − q

= pqr + rq − r − q

which, since 3 ≤ q < r, is

< pqr + 3r − 2r = |G|+ r.
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Of course, this is a contradiction.
So at least one of nr, nq or np is 1.

Comment: Justin Troyka gave the following clever argument that in fact R ⊳ G. First just counting
distinct elements of order r and q, we get

|G| ≤ nr(r − 1) + nq(q − 1)

≤ pq(r − 1) + r(q − 1)

≤ pq(r − 1) + rp

≤ pqr − pq + rp

> pqr − pq + pq = pqr.

This is a contradiction and forces at least one of Q and R to be normal. Suppose to the contrary,
R 6⊳ G. Then by the above Q ⊳ G and QR is a subgroup of index p in G. Hence QR is normal in
G. Since the index of R in RQ is q and since q is the smallest prime dividing |QR, R is normal in
QR. But then it is the unique r-Sylow subgroup of QR and is characteristic in QR. But then, since
QR ⊳ G, R would be normal in G.

5. Let |G| = 105. Suppose that G has a normal 3-Sylow subgroup. Show that G ∼= Z105,

ANS: Let P , Q and R be Sylow subgroups of order 3, 5 and 7, respectively. We have P ⊳ G by
assumption. We know from lecture that Q ⊳ G and R ⊳ G. Hence QR is a subgroup by part 2b
above. Since Q ∩R = {1}, |QR| = 35 and has no elements of order 3. Hence P ∩QR = {1}. Hence
P (QR) is a subgroup of G of order 105 and is equal to G. But by 2c, QR ∼= Q× R. Since QR has
index 3, it is normal in G and G ∼= P ×QR ∼= P ×Q×R. The latter is cyclic of order 105.
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