$\begin{array}{c} \text{Math 101 Fall 2013} \\ \text{Homework } \#5 \\ \text{Due Wednesday October 30, 2013} \end{array}$

- 1. Show that if G/Z(G) is cyclic, then G is abelian. (This completes our characterization of groups of order p^2 from lecture.)
- 2. Let G be the alternating group A_4 on four letters.
 - (a) Show that if G has a subgroup of order 6, then that subgroup would be normal.
 - (b) Conclude that if H is a subgroup of order 6, then H contains every element of order 3.
 - (c) Notice that A_4 has at least 8 elements of order 3.
 - (d) Conclude that A_4 has no subgroup of order 6 even though 6 | $|A_4|$. Hence the converse of Lagrange's Theorem is not true.
- 3. Let $D_8 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$ be the dihedral group (of symmetries of the square) so that $rs = sr^{-1}$. Observe that

$$\langle s \rangle \lhd \langle s, r^2 \rangle \lhd D_8,$$

but $\langle s \rangle \not \supset D_8$.

- 4. Suppose that Z(G) has index n in G. Then prove that every conjugacy class has at most n elements.
- 5. Prove that if $n \geq 3$, then $Z(S_n) = \{1\}$.
- 6. Let |A| > 1 and let G be a subgroup of S_A that acts transitively on A. Show that there is a $\sigma \in G$ such that $\sigma(a) \neq a$ for all $a \in A$. (One says σ is fixed point free.)