Math 101 Fall 2013
 Homework \#5
 Due Wednesday October 30, 2013

1. Show that if $G / Z(G)$ is cyclic, then G is abelian. (This completes our characterization of groups of order p^{2} from lecture.)

ANS: Let $q: G \rightarrow G / Z(G)$ be the quotient map and let $q(x)$ be a generator for $G / Z(G)$. Let y and x be elements of G. Then $q(y)=q(x)^{n}$ and $q(z)=q(x)^{m}$. It follows that $y=x^{n} a$ and $z=x^{m} b$ for $a, b \in Z(G)$. But then

$$
y z=x^{n} a y^{m} b=x^{n+m} a b=x^{m} x^{n} b a=x^{m} b x^{n} a=z y .
$$

Since x and y were arbitrary, G is commutative.
2. Let G be the alternating group A_{4} on four letters.
(a) Show that if G has a subgroup of order 6, then that subgroup would be normal.
(b) Conclude that if H is a subgroup of order 6 , then H contains every element of order 3 .
(c) Notice that A_{4} has at least 8 elements of order 3 .
(d) Conclude that A_{4} has no subgroup of order 6 even though $6\left|\left|A_{4}\right|\right.$. Hence the converse of Lagrange's Theorem is not true.
ANS: (a) If $|H|=6$, then $[G: H]=2$ and $H \triangleleft G$.
(b) With H as above, G / H is \mathbf{Z}_{2} and $a^{2} \in H$ for all $a \in G$. But if $|x|=3$, then $x=x^{4}=$ $\left(x^{2}\right)^{2} \in H$.
(c) As counted in class, S_{4} has eight distinct 3 -cycles, and of course, each of these has order 3 and is even. Hence A_{4} has eight elements of order 3.
(d) Since any subgroup of order 6 in A_{4} would have to have at least eight elements
3. Let $D_{8}=\left\{1, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\}$ be the dihedral group (of symmetries of the square) so that $r s=s r^{-1}$. Observe that

$$
\langle s\rangle \triangleleft\left\langle s, r^{2}\right\rangle \triangleleft D_{8}
$$

but $\langle s\rangle \nrightarrow D_{8}$.
ANS: Since $r^{2} s=s r^{-2}=s r^{2}$, note that $\left\langle s, r^{2}\right\rangle=\left\{1, r^{2}, s, s r^{2}\right\}$. Hence $\left|\left\langle s, r^{2}\right\rangle\right|=4$. Thus both subgroups have index 2 and must be normal. But $r s r^{-1}=s r^{-2}=s r^{2}$, so $\langle s\rangle$ is not normal in D_{8}. Remark: Note that $\langle s\rangle$ can't be characteristic in $\left\langle s, r^{2}\right\rangle$.
4. Suppose that $Z(G)$ has index n in G. Then prove that every conjugacy class has at most n elements.

ANS: Let $x \in G$ and let O_{x} be its conjugacy class. We have

$$
\left|O_{x}\right|=\left[G: C_{G}(x)\right] .
$$

But $Z(G)<C_{G}(x)$ and $n=[G: Z(G)]=\left[G: C_{G}(x)\right]\left[C_{G}(x): Z(G)\right]$. Hence $\left|O_{x}\right| \leq n$ as claimed.
5. Prove that if $n \geq 3$, then $Z\left(S_{n}\right)=\{1\}$.

ANS: Let $\sigma \in S_{n} \backslash\{1\}$. Say $\sigma(i)=j \neq i$. Since $n \geq 3$, we can find k be different from both i and j. Then $\tau=(j, k) \sigma(j, k)$ is comjugate to σ and $\tau(i)=k \neq j$ so $\tau \neq \sigma$. Thus $\sigma \notin Z(G)$. Hence $Z(G)=\{1\}$.
6. Let $|A|>1$ and let G be a subgroup of S_{A} that acts transitively on A. Show that there is a $\sigma \in G$ such that $\sigma(a) \neq a$ for all $a \in A$. (One says σ is fixed point free.)

ANS: Let $a \in A$ and let $G_{a}=\{\sigma \in G: \sigma(a)=a\}$. If $G \cdot a$ is the orbit of a, then $|G \cdot a|=\left[G, G_{a}\right]=$ $|G| /\left|G_{a}\right|$. Since $G \cdot a=A$, we see that $\left|G_{a}\right|=|G| /|A|$. Since $1 \in G_{a}$ for all a, we have

$$
\left|\bigcup_{a \in A} G_{a}\right|<\sum_{a \in A}\left|G_{a}\right|=|A| \cdot \frac{|G|}{|A|}=|G| .
$$

Thus there is a $\sigma \in G$ such that $\sigma \notin \bigcup_{a} G_{a}$. But then

$$
\sigma \in \bigcap_{a \in A} G_{a}^{c}=\{\sigma \in G: \sigma(a) \neq a \text { for all } a \in A\} .
$$

That is, σ is fixed point free.

