Math 101 Fall 2013
 Homework \#4
 Due Wednesday October 16, 2013

1. Let $R=\mathbf{Q}[x]$ and let V be the 2-dimensional rational vector space \mathbf{Q}^{2} and let $T: V \rightarrow V$ be given by $T v=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) v$. View V as a R-module in the usual way $p(x) \cdot v=p(T) v$. Let $u=\binom{1}{0}$ and $v=\binom{0}{1}$. Find $|u|$ and $|v|$.

ANS: Since $T u=u,(x-1) \cdot u=0$. Since $u \neq 0$ and $\operatorname{deg} x-1=1$, we must have $|u|=x-1$. On the other hand, $T v=\binom{1}{1}$. It then follows immediately that $(x-a) \cdot v \neq 0$ for any a. Hence the order of v must be a polynomial of degree at least 2 . But a simple computation shows that $\left(x^{2}-2 x+1\right) \cdot v=0$. Hence $|v|=(x-1)^{2}$.
2. Let M be a module over a PID. Suppose that x and y are torsion elements in M with orders r and s, respectively. If $(r, s)=1$, then show that the order of $x+y$ is $r s$.

ANS: Let a and b be such that $a s+b r=1$. Since $r s \cdot(x+y)=0$, the order t of $x+y$ divides $r s$. But if $t \cdot(x+y)=0$, then $t \cdot x=-t \cdot y$. Then $\operatorname{tr} \cdot y=0$ and $s \mid t r$. But $a s+b r=1$ implies $a s t+b r t=t$. Hence $s \mid t$. Similarly $r \mid t$. But then ast $+b r t=t$ implies that $r s \mid t$. Thus $r s$ and t are associates.
3. Show that a ring R is Noetherian if and only if every ideal in R is finitely generated. In this problem R is any ring. Ideal means two-sided ideal, and Noetherian means every ascending sequence of ideals is eventually constant.

ANS: Suppose every ideal in R is finitely generated. Let $I_{1} \subset I_{2} \subset \cdots$ be an ascending sequence if ideals. Let $I=\bigcup I_{i}$. Then I is an ideal. Say that I is generated by x_{1}, \ldots, x_{k}. But for some N, $n \geq N$ implies all the x_{i} are in I_{n}. But then we clearly have $I=I_{n}$ for all $n \geq N$.

On the other hand, let I be an ideal in R which is not finitely generated. Let $x_{1} \in I \backslash\{0\}$. Then the ideal, $\left(x_{1}\right)$, generated by x_{1} can't be all of I. So pick $x_{2} \in I \backslash\left(x_{1}\right)$. Continue. Then $\left(x_{1}\right) \subset\left(x_{1}, x_{2}\right) \subset \cdots$ is an ascending sequence of ideals which is not eventually constant.
4. Suppose that R is a PID. The aim of this problem is to prove the special case of Hilbert's Theorem which says that $R[x]$ is a Noetherian ring. Let I be a nonzero ideal in $R[x]$. By question 3, it will suffice to show that I is finitely generated. For each $n \geq 0$, let A_{n} be the union of the zero element and all elements of R which occur as leading coefficients of polynomials of degree n in I. (Thus $a_{n} \in A_{n} \backslash\{0\}$ if and only if there is a $p(x) \in I$ of the form $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$.)
(a) Show that each A_{n} is an ideal in R and that $A_{n} \subset A_{n+1}$ for all $n \geq 0$.
(b) Conclude that there is an r such that $A_{n}=A_{r}$ for all $r \geq n$.
(c) Since R is a PID, we have $A_{n}=\left(a_{n}\right)$ and there is a degree n polynomial $p_{n}(x)$ in I with leading coefficient a_{n}. Let J be the ideal in $R[x]$ generated by $\left\{p_{0}(x), \ldots, p_{r}(x)\right\}$. Then given any polynomial $f(x)$ of degree d in I, that there a polynomial $g(x) \in J$ such that the degree of $f(x)-g(x)$ is strictly less than d.
(d) Conclude that $I=J$. Hence I is finitely generated.

ANS: (a) Suppose that a and b are in $A_{n} \backslash\{0\}$. Then there are degree n polynomials $f(x)$ and $g(x)$ with leading coefficients a and b, respectively. If $b=-a$, then $a+b=0 \in A_{n}$ by definition. Otherwise, $f(x)+g(x)$ has degree n and $a+b \in A_{n}$. If $r \in R$, then either $r=0$, or $r \cdot f(x) \in I$ and has degree n. In any event, $r a \in A_{n}$. Thus A_{n} is an ideal. On the other hand, the leading coefficient of $x f(x)$ is still a, so $A_{n} \subset A_{n+1}$. This proves (a).
(b) Since R is a PID, it is Noetherian.
(c) In this problem, as suggested in lecture, it is convenient to assign degree -1 to the zero polynomial. Let $f(x)$ be a polynomial in I with degree $d \geq 0$. If $d>r$, then the leading coefficient of $f(x)$ is $c a_{r}$ for some $c \in R$. Then $f(x)-x^{d-r} p_{r}(x)$ has degree strictly less than d and of course $x^{d-r} p_{r}(x) \in J$. On the other hand, if $\operatorname{deg} f(x)=k \leq r$, then the leading coefficient of $f(x)$ is of the form $c a_{k}$ where $A_{k}=\left(a_{k}\right)$. Then $f(x)-c p_{k}(x)$ has degree strictly less than $d=k$. Again, $c p_{k}(x) \in J$.
(d) We claim that if $f(x) \in I$, then $f(x) \in J$. This will suffice. This is clear if $f(x)=0$ (or if $f(x)$ is constant). We assume the result if $\operatorname{deg} f(x)<d$. Clearly, $J \subset I$. But by the previous part, there is a $g(x) \in J$ such that $f(x)-g(x)$ is in I and has degree strictly less than d. Hence $f(x)-g(x) \in I$ by assumption. Since $g(x) \in I$, this means $f(x) \in I$, and we are done.
5. Let M be a module over a PID R. Suppose that $m \in M$ has order r. If $s \in R$, show that $\langle m\rangle[s]=\left\langle\frac{r}{(r, s)} \cdot m\right\rangle \cong R /(r, s)$. (Here " (r, s) " is used both to designate the ideal generated by r and s as well as the generator of that ideal.)

ANS: Note that $\left(\frac{r}{(r, s)}, \frac{s}{(r, s)}\right)=1$. Also, you should be able to prove that if $(a, b)=1$ and $a \mid b c$, then $a \mid c$. Using these observations we have

$$
\begin{aligned}
\langle m\rangle[s] & =\{u \cdot m: s u \cdot m=0\} \\
& =\{u \cdot m: r \mid s u\} \\
& =\left\{u \cdot m: \frac{r}{(r, s)} \left\lvert\, \frac{s}{(r, s)} u\right.\right\} \\
& =\left\{u \cdot m: \left.\frac{r}{(r, s)} \right\rvert\, u\right\} \\
& =\left\langle\frac{r}{(r, s)} \cdot m\right\rangle .
\end{aligned}
$$

Thus we get a map of R onto $\langle m\rangle$ by $v \mapsto \frac{v r}{(r, s)} \cdot m$, and this map clearly has kernel (r, s). Thus the isomorphism claimed in the problem follows from the First Isomorphism Theorem for Modules.
6. Let F be a field and give $R=\prod_{n=1}^{\infty} F$ the obvious ring structure. Let $I=\left\{\left(x_{i}\right) \in R\right.$: $x_{i}=0$ for all by finitely many $\left.i\right\}$.
(a) Observe that I is an ideal in R. Hence I is an R-module.
(b) Show that I is not a finitely generated R-module.
(c) Conclude that submodules of finitely generated modules need not be finitely generated.

ANS: This is the example Michael suggested in lecture. Parts (a) and (c) are straightforward; it is easy to see that I is an ideal and R is generated by its identity (the constant function 1).

For part (b), suppose the contrary that I were generated as an R-module by m_{1}, \ldots, m_{k}. Then for each i there is an N_{i} such that $n \geq N_{i}$ implies that $m_{i}(n)=0$. Let $N=\max \left\{N_{1}, \ldots, N_{k}\right\}$. Then if m is the "linear combination" $r_{1} \cdot m_{1}+\cdots+r_{k} \cdot m_{k}$ for $r_{i} \in R$, then $m(n)=0$ for all $n \geq N$. But the submodule generated by $\left\{m_{1}, \ldots, m_{k}\right\}$ consists precisely of all such linear combinations. Hence $\epsilon_{N} \notin\left\langle\left\{m_{1}, \ldots, m_{k}\right\}\right\rangle$. This shows I can't be finitely generated.
7. Here and elsewhere, V_{T} is the $F[x]$-module corresponding to a finite-dimensional F-vector space V and linear map $T: V \rightarrow V$. Suppose that $W=\langle v\rangle$ is a cyclic submodule of V_{T} of order $f(x)$ for $f \in F[x]$ with $\operatorname{deg} f=k>0$. Show that $\left\{v, T v, T^{2} v, \ldots, T^{k-1} v\right\}$ is a (vector space) basis for W.

ANS: Note that the map $p(x) \mapsto p(x) \cdot v$ factors through an isomorphism of $F[x] /(f(x))$ onto W. Since $f(x)$ has degree k, every element of $F[x] /(f(x))$ has a representative of the form $\left[b_{0}+\right.$ $\left.b_{1} x+\cdots+b_{k-1} x^{k-1}\right]$: by the division algorithm, every $g(x) \in F[x]$ is of the form $q(x) f(x)+r(x)$ with $\operatorname{deg} r(x)<k$. (In fact, it is not so hard to see that $F[x] /(f(x))$ is an F-vector space of dimension k.) Hence it is clear that $\beta=\left\{v, T v, T^{2} v, \ldots, T^{k-1} v\right\}$ spans W. On the other hand if $c_{0} v+c_{1} T v+\cdots+c_{k-1} T^{k-1} v=0$, then $g(x) \cdot v=0$ where $g(x)=c_{0}+c_{1} x+\cdots c_{k-1} x^{k-1}$. But f is the nonzero polynomial of minimal degree such that $f(x) \cdot v=0$. Hence $g(x)$ is the zero polynomial and all the c_{i} are zero. Thus β is linearly independent and spans; that is, β is a basis as claimed.

