
Math 101 Fall 2013

Homework #4

Due Wednesday October 16, 2013

1. Let R = Q[x] and let V be the 2-dimensional rational vector space Q2 and let T : V → V
be given by Tv =

(

1 1
0 1

)

v. View V as a R-module in the usual way p(x) · v = p(T )v. Let
u =

(

1
0

)

and v =
(

0
1

)

. Find |u| and |v|.

ANS: Since Tu = u, (x − 1) · u = 0. Since u 6= 0 and deg x − 1 = 1, we must have |u| = x − 1.
On the other hand, Tv =

(

1
1

)

. It then follows immediately that (x − a) · v 6= 0 for any a. Hence
the order of v must be a polynomial of degree at least 2. But a simple computation shows that
(x2 − 2x+ 1) · v = 0. Hence |v| = (x− 1)2.

2. Let M be a module over a PID. Suppose that x and y are torsion elements in M with
orders r and s, respectively. If (r, s) = 1, then show that the order of x+ y is rs.

ANS: Let a and b be such that as + br = 1. Since rs · (x + y) = 0, the order t of x + y divides
rs. But if t · (x + y) = 0, then t · x = −t · y. Then tr · y = 0 and s | tr. But as + br = 1 implies
ast+ brt = t. Hence s | t. Similarly r | t. But then ast+ brt = t implies that rs | t. Thus rs and t
are associates.

3. Show that a ring R is Noetherian if and only if every ideal in R is finitely generated.
In this problem R is any ring. Ideal means two-sided ideal, and Noetherian means every
ascending sequence of ideals is eventually constant.

ANS: Suppose every ideal in R is finitely generated. Let I1 ⊂ I2 ⊂ · · · be an ascending sequence
if ideals. Let I =

⋃

Ii. Then I is an ideal. Say that I is generated by x1, . . . , xk. But for some N ,
n ≥ N implies all the xi are in In. But then we clearly have I = In for all n ≥ N .

On the other hand, let I be an ideal in R which is not finitely generated. Let x1 ∈ I \ {0}.
Then the ideal, (x1), generated by x1 can’t be all of I. So pick x2 ∈ I \ (x1). Continue. Then
(x1) ⊂ (x1, x2) ⊂ · · · is an ascending sequence of ideals which is not eventually constant.

4. Suppose that R is a PID. The aim of this problem is to prove the special case of Hilbert’s
Theorem which says that R[x] is a Noetherian ring. Let I be a nonzero ideal in R[x]. By
question 3, it will suffice to show that I is finitely generated. For each n ≥ 0, let An be
the union of the zero element and all elements of R which occur as leading coefficients of
polynomials of degree n in I. (Thus an ∈ An \ {0} if and only if there is a p(x) ∈ I of the
form p(x) = anx

n + an−1x
n−1 + · · ·+ a0.)

(a) Show that each An is an ideal in R and that An ⊂ An+1 for all n ≥ 0.
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(b) Conclude that there is an r such that An = Ar for all r ≥ n.

(c) Since R is a PID, we have An = (an) and there is a degree n polynomial pn(x) in I
with leading coefficient an. Let J be the ideal in R[x] generated by {p0(x), . . . , pr(x)}.
Then given any polynomial f(x) of degree d in I, that there a polynomial g(x) ∈ J
such that the degree of f(x)− g(x) is strictly less than d.

(d) Conclude that I = J . Hence I is finitely generated.

ANS: (a) Suppose that a and b are in An \ {0}. Then there are degree n polynomials f(x) and
g(x) with leading coefficients a and b, respectively. If b = −a, then a + b = 0 ∈ An by definition.
Otherwise, f(x) + g(x) has degree n and a+ b ∈ An. If r ∈ R, then either r = 0, or r · f(x) ∈ I and
has degree n. In any event, ra ∈ An. Thus An is an ideal. On the other hand, the leading coefficient
of xf(x) is still a, so An ⊂ An+1. This proves (a).

(b) Since R is a PID, it is Noetherian.
(c) In this problem, as suggested in lecture, it is convenient to assign degree −1 to the zero

polynomial. Let f(x) be a polynomial in I with degree d ≥ 0. If d > r, then the leading coefficient
of f(x) is car for some c ∈ R. Then f(x) − xd−rpr(x) has degree strictly less than d and of course
xd−rpr(x) ∈ J . On the other hand, if deg f(x) = k ≤ r, then the leading coefficient of f(x) is of
the form cak where Ak = (ak). Then f(x) − cpk(x) has degree strictly less than d = k. Again,
cpk(x) ∈ J .

(d) We claim that if f(x) ∈ I, then f(x) ∈ J . This will suffice. This is clear if f(x) = 0 (or
if f(x) is constant). We assume the result if deg f(x) < d. Clearly, J ⊂ I. But by the previous
part, there is a g(x) ∈ J such that f(x) − g(x) is in I and has degree strictly less than d. Hence
f(x)− g(x) ∈ I by assumption. Since g(x) ∈ I, this means f(x) ∈ I, and we are done.

5. Let M be a module over a PID R. Suppose that m ∈ M has order r. If s ∈ R, show that
〈m〉[s] = 〈 r

(r,s)
·m〉 ∼= R/(r, s). (Here “(r, s)” is used both to designate the ideal generated

by r and s as well as the generator of that ideal.)

ANS: Note that
(

r
(r,s) ,

s
(r,s)

)

= 1. Also, you should be able to prove that if (a, b) = 1 and a | bc,

then a | c. Using these observations we have

〈m〉[s] = {u ·m : su ·m = 0 }

= {u ·m : r | su }

= {u ·m :
r

(r, s)
|

s

(r, s)
u }

= {u ·m :
r

(r, s)
| u }

=
〈 r

(r, s)
·m

〉

.

Thus we get a map of R onto 〈m〉 by v 7→ vr
(r,s) ·m, and this map clearly has kernel (r, s). Thus the

isomorphism claimed in the problem follows from the First Isomorphism Theorem for Modules.
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6. Let F be a field and give R =
∏

∞

n=1 F the obvious ring structure. Let I = { (xi) ∈ R :
xi = 0 for all by finitely many i }.

(a) Observe that I is an ideal in R. Hence I is an R-module.

(b) Show that I is not a finitely generated R-module.

(c) Conclude that submodules of finitely generated modules need not be finitely generated.

ANS: This is the example Michael suggested in lecture. Parts (a) and (c) are straightforward; it
is easy to see that I is an ideal and R is generated by its identity (the constant function 1).

For part (b), suppose the contrary that I were generated as an R-module by m1, . . . ,mk. Then
for each i there is an Ni such that n ≥ Ni implies that mi(n) = 0. Let N = max{N1, . . . , Nk}. Then
if m is the “linear combination” r1 ·m1 + · · ·+ rk ·mk for ri ∈ R, then m(n) = 0 for all n ≥ N . But
the submodule generated by {m1, . . . ,mk} consists precisely of all such linear combinations. Hence
ǫN /∈ 〈{m1, . . . ,mk}〉. This shows I can’t be finitely generated.

7. Here and elsewhere, VT is the F [x]-module corresponding to a finite-dimensional F -vector
space V and linear map T : V → V . Suppose that W = 〈v〉 is a cyclic submodule of VT of
order f(x) for f ∈ F [x] with deg f = k > 0. Show that {v, Tv, T 2v, . . . , T k−1v} is a (vector
space) basis for W .

ANS: Note that the map p(x) 7→ p(x) · v factors through an isomorphism of F [x]/(f(x)) onto
W . Since f(x) has degree k, every element of F [x]/(f(x)) has a representative of the form [b0 +
b1x + · · · + bk−1x

k−1]: by the division algorithm, every g(x) ∈ F [x] is of the form q(x)f(x) + r(x)
with deg r(x) < k. (In fact, it is not so hard to see that F [x]/(f(x)) is an F -vector space of
dimension k.) Hence it is clear that β = {v, Tv, T 2v, . . . , T k−1v} spans W . On the other hand if
c0v + c1Tv + · · ·+ ck−1T

k−1v = 0, then g(x) · v = 0 where g(x) = c0 + c1x+ · · · ck−1x
k−1. But f is

the nonzero polynomial of minimal degree such that f(x) · v = 0. Hence g(x) is the zero polynomial
and all the ci are zero. Thus β is linearly independent and spans; that is, β is a basis as claimed.
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