Math 101 Fall 2013
 Homework \#3
 Due Wednesday 9 October 2013

1. Recall that a subset S of an R-module is linearly independent if given any subset $\left\{s_{1}, \cdots, s_{m}\right\}$ of distinct elements of S and elements r_{i} of R such that $r_{1} \cdot s_{1}+\cdots+r_{m} \cdot s_{m}=0$, then $r_{i}=0$ for all i. We call S a basis for R if it is linearly independent and generates R (that is, every element of R is a finite linear combination of elements of S). Show that R is free if and only if it has a basis.
2. Give a careful statement of Zorn's Lemma (look it up). Then use Zorn's Lemma to prove that if R is a ring (with identity), then every proper ideal of R is contained in a maximal ideal. In particular, R has a maximal ideal.
3. Recall that the family of subsets of any set are ordered by containment: $A \leq B$ if and only if $A \subset B$. Prove the following assertions that were used without proof in our proof that submodules of free modules are free for modules over at PID.
(a) Let $\mathcal{S}:=\{(C, f)\}$ be a nonempty collection of functions $f: C \rightarrow A$ where C is a subset of a set B. Order \mathcal{S} by $(C, f) \leq(D, g)$ if $C \subset D$ and $\left.g\right|_{C}=f$. Let $\left\{\left(C_{i}, f_{i}\right)\right\}$ be a totally ordered subset of \mathcal{S}. Define $C=\bigcup C_{i}$. Show that we get a well-defined function $f: C \rightarrow A$ be letting $f(c)=f_{i}(c)$ if $c \in C_{i}$.
(b) Let B be a basis for a free module F over R. Let $\left\{C_{i}\right\}$ be a totally ordered collection of subsets of B whose union is all of B. Show that $F=\bigcup\left\langle C_{i}\right\rangle$ where, as usual, $\langle C\rangle$ is the submodule of F generated by C. (We don't actually need $\left\{C_{i}\right\}$ to be totally ordered. We just need it to be cofinal in that given C_{i} and C_{j} there is a C_{k} containing both of them.)
4. Let V be a finite-dimensional k-vector space and $R: V \rightarrow V$ be a linear operator such that $R^{2}=\operatorname{id}_{V}$. Assume the characteristic of k is not 2 . Show that V has a basis β such that

$$
[R]_{\beta}^{\beta}=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & -I_{s}
\end{array}\right)
$$

where of course I_{p} is the $p \times p$ identity matrix.
5. Let $f: \mathbf{Z}^{n} \rightarrow \mathbf{Z}^{n}$ be a \mathbf{Z}-module map.
(a) If f is surjective, show that it must also be injective.
(b) If f is injective, it need not be surjective, but show that it must be almost surjective in that its cokernel is finite.
(I found the $S^{-1}(\cdot)$ functor helpful.)
6. (Internal coproducts) Let M be an R-module. Suppose there are submodules $\left\{M_{j}\right\}_{j \in J}$ such that
(a) the submodule $\sum_{j} M_{j}$ generated by the set $S=\bigcup_{j} M_{j}$ is all of M;
(b) and for each $j, M_{j} \cap \sum_{i \neq j} M_{i}=\{0\}$.

Then show that M is isomorphic to $\coprod_{j \in J} M_{j}$ as R-modules.
7. (Primary Decomposition) Let M be a torsion abelian group and let P be the positive primes in Z. For each $p \in P$ and $n \in \mathbf{N}$ let ${ }_{p^{n}} M=\left\{m \in M: p^{n} \cdot m=0\right\}$ be the submodule of M annihilated by p^{n}. Let $M[p]:=\bigcup_{n=1}^{\infty}\left(p^{n} M\right)$. Then $M[p]$ is a submodule of M called the p-primary component of M. Show that $M \cong \coprod_{p \in P} M[p]$. (I used question 6 and the observation that if $\left(a_{1}, \ldots, a_{n}\right)=1$ - that is, if the integers a_{1}, \ldots, a_{n} have no common factor other than 1 - then there are integers b_{i} such that $b_{1} a_{1}+\cdots+b_{n} a_{n}=1$.)

