
Math 101 Fall 2013

Homework #3

Due Wednesday 9 October 2013

1. Recall that a subset S of anR-module is linearly independent if given any subset {s1, · · · , sm}
of distinct elements of S and elements ri of R such that r1 · s1+ · · ·+ rm · sm = 0, then ri = 0
for all i. We call S a basis for R if it is linearly independent and generates R (that is, every
element of R is a finite linear combination of elements of S). Show that R is free if and only
if it has a basis.

ANS: Suppose that M is a free module on S. Then we can assume that M =
∐

s∈S R for a set
S; that is, M is the set of functions m from S to R such that m(s) = 0 for all but finitely many s.
If S = ∅, then we interpret the latter as the zero module with basis S = ∅. Otherwise, I claim that
S′ = { ǫs : s ∈ S } is a basis for M where we recall that ǫs : S → R is the function

ǫs(s
′) =

{

1 if s′ = s and

0 otherwise.

If s1, . . . , sm are distinct elements and if

f = r1 · ǫs1 + · · ·+ rm · ǫsm = 0,

then 0 = f(sj) = rj for all j. It follows that S
′ is linearly independent. On the other hand, if f ∈ M ,

then we can suppose that s1, . . . , sn are the only inputs for which f(s) 6= 0. But then

f = f(s1) · ǫs1 + · · ·+ f(sn) · · · ǫsn .

This shows that S′ generates and that S′ is a basis.
Now suppose that S is a basis for M . We can assume that M 6= {0} and that S is nonempty.

Let i : S → M be the inclusion map and let j : S → N be a map of S into another R-module N .
Given m ∈ M , there are unique si and ri, with only finitely many ri 6= 0, so that

m =
∑

ri · si.

Hence we can define a function f : M → N by f(m) =
∑

ri · j(si). It is straightforward to check
that f is module map and that it is the unique map such that the diagram

M

f

��
S

i

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

j
// N

commutes. (For example, if m =
∑

ri · si and m′ =
∑

r′i · si, then m+m′ =
∑

(ri + r′i) · si; hence,
f(m+m′) = f(m) + f(m′).) Thus i : S → M has the required UMP and M is free on S.
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Comment: It should be clear from the proof that for modules over commutative rings that the
cardinality of the basis is the same as the rank of the module as a free module.

2. Give a careful statement of Zorn’s Lemma (look it up). Then use Zorn’s Lemma to prove
that if R is a ring (with identity), then every proper ideal of R is contained in a maximal
ideal. In particular, R has a maximal ideal.

ANS: A subset U of an ordered set S is totally ordered if any pair of elements in U are comparable.
A subset U of S has an upper bound in S if there is a v ∈ S such that u ≤ v for all u ∈ U . An
element b in S called a maximal element if s ∈ S is such that b ≤ s, then b = s.

Zorn’s Lemma says that if every totally ordered subset of a nonempty set S has an upper bound
in S, then S has a maximal element.

As an application, let I be a proper ideal in R and let S be the set of proper ideals containing
I. This set is nonempty as it contains I and it is ordered by inclusion. Let {Ji} be a totally ordered
subset of S. Since each Ji is proper, 1 /∈ Ji. Hence 1 /∈ J :=

⋃

i Ji. Thus J is a proper ideal
containing I, and hence belongs to S, which is an upper bound for each Ji. Thus S has a maximal
element which almost by definition is a maximal ideal in R.

3. Recall that the family of subsets of any set are ordered by containment: A ≤ B if and
only if A ⊂ B. Prove the following assertions that were used without proof in our proof that
submodules of free modules are free for modules over at PID.

(a) Let S := {(C, f)} be a nonempty collection of functions f : C → A where C is a subset
of a set B. Order S by (C, f) ≤ (D, g) if C ⊂ D and g|C = f . Let {(Ci, fi)} be a
totally ordered subset of S. Define C =

⋃

Ci. Show that we get a well-defined function
f : C → A be letting f(c) = fi(c) if c ∈ Ci.

(b) Let B be a basis for a free module F over R. Let {Ci} be a totally ordered collection of
subsets of B whose union is all of B. Show that F =

⋃

〈Ci〉 where, as usual, 〈C〉 is the
submodule of F generated by C. (We don’t actually need {Ci} to be totally ordered.
We just need it to be cofinal in that given Ci and Cj there is a Ck containing both of
them.)

4. Let V be a finite-dimensional k-vector space and R : V → V be a linear operator such
that R2 = idV . Assume the characteristic of k is not 2. Show that V has a basis β such that

[R]ββ =

(

Ir 0
0 −Is

)
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where of course Ip is the p× p identity matrix.

ANS: Consider V as a k[x]-module in the usual way: p(x) · v = p(R)v. Let I = (1 − x) and
J = (1 + x). Then IJ · V = {0}. Since 1

2 (1− x) + 1
2 (1 + x) = 1, we clearly have I + J = R. Hence

by the Primary Decomposition Theorem from lecture, V = IV ⊕ JV where

IV = { v ∈ V : (1− x) · v = 0 } = { v ∈ V : Rv = v } = E1.

Similarly, JV is the eigenspace E−1 = { v ∈ V : Rv = −v }. Now we can let β1 be a basis for E1 and

β2 a basis for E−1. Then β = β1 ∪ β2 is a basis for V and [R]ββ has the required form.

Alternate Solution: Let P = 1
2 (I −R). Then P 2 = P and you can apply a previous homework

problem.

5. Let f : Zn → Zn be a Z-module map.

(a) If f is surjective, show that it must also be injective.

(b) If f is injective, it need not be surjective, but show that it must be almost surjective

in that its cokernel is finite.

(I found the S−1(·) functor helpful.)

ANS: (a) Since S−1(·) is exact, the short exact sequence

0 // ker f // Zn
f

// Zn // 0

gives rise to the short exact sequence

0 // S−1(ker f) // Qn
S−1(f)

// Qn // 0

of Q-vector spaces. Thus S−1(ker f) = {0} by the rank-nullity theorem. On the other hand, as a
submodule of a free module, ker f is free. By the above, it has rank zero (recall, the rank of any
module over an integral domain is the dimension of S−1(M) as a vector space over S−1R). Hence
ker f = {0}.

(b) Here we consider the short exact sequence

0 // Zn
f

// Zn
q

// Zn/f(Zn) // 0.

Then we get the short exact sequence

0 // Qn
S−1(f)

// Qn
S−1(q)

// S−1(Zn/f(Zn)) // 0.

By the rank-nullity theorem, S−1(f) is surjective. Thus, the rank of Zn/f(Zn) is zero. Thus it is a
finite group (every finitely generated abelian group factors as a finite group cross a free group).

6. (Internal coproducts) Let M be an R-module. Suppose there are submodules {Mj}j∈J
such that

–3–



(a) the submodule
∑

j Mj generated by the set S =
⋃

j Mj is all of M ;

(b) and for each j, Mj ∩
∑

i 6=j Mi = {0}.

Then show that M is isomorphic to
∐

j∈J Mj as R-modules.

ANS: Let κj : Mj → M be the inclusion map. Then by the UMP of the coproduct, we have a
unique module map f :

∐

j Mj → M such that

∐

j Mj

f

��
Mj

ij
<<
①
①
①
①
①
①
①
①

κj

// M

commutes. Clearly, f(h) =
∑

j f(j) (which is a finite sum of nonzero elements). Therefore, if
f(h) = 0, then we have

∑

j f(j) = 0. Thus for each j ∈ J ,

h(j) =
∑

i6=j

f(i).

It follows that h(j) ∈ Mj ∩
∑

i6=j Mi = {0}. Hence h = 0 and f is injective. On the other hand, the
range of f clearly contains Mj for each j. Hence it contains the subspace

∑

j Mj generated by the
Mj . Thus f is surjective. Thus f is the required isomorphism.

7. (Primary Decomposition) Let M be a torsion abelian group and let P be the positive
primes in Z. For each p ∈ P and n ∈ N let pnM = {m ∈ M : pn ·m = 0 } be the submodule
of M annihilated by pn. Let M [p] :=

⋃∞

n=1

(

pnM
)

. Then M [p] is a submodule of M called
the p-primary component of M . Show that M ∼=

∐

p∈P M [p]. (I used question 6 and the
observation that if (a1, . . . , an) = 1 — that is, if the integers a1, . . . , an have no common
factor other than 1 — then there are integers bi such that b1a1 + · · ·+ bnan = 1.)

ANS: Suppose that m ∈ M [p] ∩ M [q] with q 6= p. Then there are integers m and n such that
pm ·m = 0 = qn ·m. Since (pm, qn) = 1, then there are integers a and b such that apm + bqn = 1.
Then m = (apm+bqn)·m = 0. Hence we certainly have M [p]∩

∑

q 6=p M [q] = {0}. On the other hand,
since M is torsion, if m ∈ M , then there is an integer N such that N ·m = 0. Let M = pe11 · · · pekk for
distinct primes pi and ei ≥ 1. Let Ni = N/peii . Then (N1, . . . , Nk) = 1 and there are integers ai such
that a1N1 + · · · akNk = 1. But then m = (a1N1 + · · · akNk) ·m = m1 + · · ·mk with mi = aiNi ·m.
But peii ·mi = 0 and mi ∈ M [pi]. Hence

∑

p M [p] = M . Now we can apply question 6.
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