Math 101 Fall 2013
Homework #3
Due Wednesday 9 October 2013

1. Recall that a subset S of an R-module is linearly independent if given any subset {s1, -, $;}
of distinct elements of S and elements r; of R such that rq-s;+---+7r,, S, =0, thenr; =0
for all i. We call S a basis for R if it is linearly independent and generates R (that is, every
element of R is a finite linear combination of elements of S). Show that R is free if and only
if it has a basis.

ANS: Suppose that M is a free module on S. Then we can assume that M = [[, g R for a set

S; that is, M is the set of functions m from S to R such that m(s) = 0 for all but finitely many s.

If S = (), then we interpret the latter as the zero module with basis S = (). Otherwise, I claim that
S" ={es:5€ S} is a basis for M where we recall that €5 : S — R is the function

(') 1 if s’ =sand
€s(s') =
0 otherwise.

If s1,...,s,, are distinct elements and if
f:T'l'ESl +"'+Tm'€sm :07

then 0 = f(s;) = r; for all j. It follows that S’ is linearly independent. On the other hand, if f € M,
then we can suppose that s1,...,s, are the only inputs for which f(s) # 0. But then

f=1F(s1) € -+ flsn) e,

This shows that S’ generates and that S’ is a basis.

Now suppose that S is a basis for M. We can assume that M # {0} and that S is nonempty.
Let i : S — M be the inclusion map and let j : S — N be a map of S into another R-module N.
Given m € M, there are unique s; and r;, with only finitely many r; # 0, so that

m = E i Si.

Hence we can define a function f : M — N by f(m) = > r; - j(s;). It is straightforward to check
that f is module map and that it is the unique map such that the diagram

/ lf
J
commutes. (For example, if m =3 r;-s; and m' =Y 7 - s;, then m +m/ = (r; +7}) - s;; hence,

fm+m') = f(m)+ f(m’).) Thusi:S — M has the required UMP and M is free on S.
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COMMENT: It should be clear from the proof that for modules over commutative rings that the
cardinality of the basis is the same as the rank of the module as a free module.

2. Give a careful statement of Zorn’s Lemma (look it up). Then use Zorn’s Lemma to prove
that if R is a ring (with identity), then every proper ideal of R is contained in a maximal
ideal. In particular, R has a maximal ideal.

ANS: A subset U of an ordered set S is totally ordered if any pair of elements in U are comparable.
A subset U of S has an upper bound in S if there is a v € S such that v < v for all uw € U. An
element b in S called a maximal element if s € S is such that b < s, then b = s.

Zorn’s Lemma says that if every totally ordered subset of a nonempty set S has an upper bound
in .S, then S has a maximal element.

As an application, let I be a proper ideal in R and let S be the set of proper ideals containing
I. This set is nonempty as it contains I and it is ordered by inclusion. Let {J;} be a totally ordered
subset of §. Since each J; is proper, 1 ¢ J;. Hence 1 ¢ J := |J;J;. Thus J is a proper ideal
containing I, and hence belongs to S, which is an upper bound for each J;. Thus & has a maximal

element which almost by definition is a maximal ideal in R.

3. Recall that the family of subsets of any set are ordered by containment: A < B if and
only if A C B. Prove the following assertions that were used without proof in our proof that
submodules of free modules are free for modules over at PID.

(a)

Let § := {(C, f)} be a nonempty collection of functions f : C' — A where C' is a subset
of a set B. Order S by (C, f) < (D,g) if C C D and g|c = f. Let {(C;, fi)} be a
totally ordered subset of S. Define C' = | C;. Show that we get a well-defined function
f:C — Abeletting f(c) = fi(c) if c € C;.

Let B be a basis for a free module F over R. Let {C;} be a totally ordered collection of
subsets of B whose union is all of B. Show that F' = [ J(C;) where, as usual, (C) is the
submodule of F' generated by C. (We don’t actually need {C;} to be totally ordered.
We just need it to be cofinal in that given C; and C; there is a C}, containing both of
them.)

4. Let V be a finite-dimensional k-vector space and R : V — V be a linear operator such
that R? = idy,. Assume the characteristic of k is not 2. Show that V' has a basis 3 such that

[Rl5 = ({) —Ofs)



where of course I, is the p x p identity matrix.

ANS: Consider V as a k[z]-module in the usual way: p(x)-v = p(R)v. Let I = (1 — z) and
J=(1+x). Then IJ-V = {0}. Since 3(1 — z) 4+ £(1 + x) = 1, we clearly have I + J = R. Hence
by the Primary Decomposition Theorem from lecture, V = ;V & ;V where

V={veV:1-2)-v=0}={veV:Rv=v}=4¢&.

Similarly, ;V is the eigenspace €1 = {v € V : Rv = —v }. Now we can let 81 be a basis for & and
(B2 a basis for £_1. Then 8 = 1 U 3 is a basis for V and [R]g has the required form.

ALTERNATE SOLUTION: Let P = %(I — R). Then P? = P and you can apply a previous homework
problem.

5. Let f:Z" — Z" be a Z-module map.

(a) If f is surjective, show that it must also be injective.

(b) If f is injective, it need not be surjective, but show that it must be almost surjective
in that its cokernel is finite.

(T found the S~!(-) functor helpful.)
ANS: (a) Since S71(-) is exact, the short exact sequence

f

0 ker f z" 7z 0
gives rise to the short exact sequence
571
0— S '(ker f) Qn D qn 0

of Q-vector spaces. Thus S~!(ker f) = {0} by the rank-nullity theorem. On the other hand, as a
submodule of a free module, ker f is free. By the above, it has rank zero (recall, the rank of any
module over an integral domain is the dimension of S~™!(M) as a vector space over S™'R). Hence
ker f = {0}.

(b) Here we consider the short exact sequence

0—>gzn_Jogn_1¢

z/f(Z") — 0.
Then we get the short exact sequence

0 Qg sz (2 o,

By the rank-nullity theorem, S~!(f) is surjective. Thus, the rank of Z"/f(Z") is zero. Thus it is a
finite group (every finitely generated abelian group factors as a finite group cross a free group).

6. (Internal coproducts) Let M be an R-module. Suppose there are submodules {M,} ;e
such that
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(a) the submodule }_; M; generated by the set S = J; M; is all of M;
(b) and for each j, M; N3, M; = {0}.

Then show that M is isomorphic to [] jes M as R-modules.

ANS: Let x; : M; — M be the inclusion map. Then by the UMP of the coproduct, we have a
unique module map f : Hj M; — M such that

Hj M;

e

M ——M
J

commutes. Clearly, f(h) = >, f(j) (which is a finite sum of nonzero elements). Therefore, if
f(h) =0, then we have 3, f(j) = 0. Thus for each j € J,

h(j) =Y f(0).
i#]
It follows that h(j) € M; N}, ,; M; = {0}. Hence h = 0 and f is injective. On the other hand, the

range of f clearly contains M; for each j. Hence it contains the subspace ) ; M; generated by the
M;. Thus f is surjective. Thus f is the required isomorphism.

7. (Primary Decomposition) Let M be a torsion abelian group and let P be the positive
primes in Z. For each p € P andn € N let ;oM = {m € M : p"-m = 0} be the submodule
of M annihilated by p". Let M[p] := ;2 (,»M). Then M]p| is a submodule of M called
the p-primary component of M. Show that M = [ _p M[p]. (I used question 6 and the
observation that if (a,...,a,) = 1 — that is, if the integers as,...,a, have no common
factor other than 1 — then there are integers b; such that byay + - -+ + bya, = 1.)

ANS: Suppose that m € M[p] N M]q] with ¢ # p. Then there are integers m and n such that
p™-m =0 =q"-m. Since (p",¢") = 1, then there are integers a and b such that ap™ + bg"™ = 1.
Then m = (ap™+bg")-m = 0. Hence we certainly have M[p]N}_  M|g] = {0}. On the other hand,
since M is torsion, if m € M, then there is an integer N such that N-m = 0. Let M = pi* ---p;* for
distinct primes p; and e; > 1. Let N; = N/p;*. Then (Nq,..., Ni) = 1 and there are integers a; such
that a; N1 + -+ - ap N = 1. But then m = (a1 N1 + -+ - apNg) - m = mq + - - - my, with m; = a;N; - m.
But p{* - m; = 0 and m; € M[p;]. Hence Zp M|[p] = M. Now we can apply question 6.



