Math 101 Fall 2013
 Homework \#2
 Due 2 October 2013

1. Let $0 \longrightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{\pi} M^{\prime \prime} \longrightarrow 0$ be a short exact sequence of R-modules. Show that if i has a retraction $r: M \rightarrow M^{\prime}$, then $M \cong M^{\prime} \oplus M^{\prime \prime}$.
2. Let M be an R-module and let $S \subset M$ be a subset. Show that there is a smallest submodule, $\langle S\rangle$, of M containing S. We say that $\langle S\rangle$ is the submodule generated by S. Of course, if $\langle S\rangle=M$, then we say that S generates M. Now let S be any set and $F(S)$ together with $i: S \rightarrow F(S)$ a free module on S. Show that $F(S)$ is generated by $i(S)$.
3. Give an example of a group G with subgroups H and K such that $H K=\{h k$: $h \in H$ and $k \in K\}$ is not a subgroup of G. (Groups start to get interesting at $G=S_{3}$.)
4. Let \mathbf{Q} be the additive group of rationals. Show that \mathbf{Q} is indecomposable as a \mathbf{Z}-module: that is, show that it is not possible to write $\mathbf{Q} \cong A \oplus B$ for \mathbf{Z}-modules A and B. Conclude that \mathbf{Q} is not a free \mathbf{Z}-module.
5. Let \mathbf{Q}^{\times}be the multiplicative group of nonzero rational numbers. Show that as a \mathbf{Z} module, $\mathbf{Q}^{\times} \cong\left(\coprod_{i=1}^{\infty} \mathbf{Z}\right) \oplus \mathbf{Z}_{2}$. (First write $\mathbf{Q}^{\times} \cong H \oplus K$ where $H=\left\{q \in \mathbf{Q}^{\times}: q>0\right\}$. Let $\left\{p_{i}\right\}$ be the set of primes in \mathbf{N} and define $\phi_{i}: \mathbf{Z} \rightarrow H$ by $\phi_{i}(k)=p_{i}^{k}$.)
6. In lecture, we proved that if R is a commutative ring, then $R^{n} \cong R^{m}$ as R-modules if and only if $n=m$. If R is not commutative, this is no longer true. Show that if V is a (countably) infinite dimensional k-vector space and if $R=\operatorname{End}_{k}(V)=\operatorname{hom}_{k}(V, V)$, then $R \cong R \oplus R$ (as R-modules). (You might want to start by observing that $\operatorname{hom}_{k}(V, V)$ has a nice ring structure.)
7. An R-module P is called projective if whenever we have an R-module epimorphism v : $M \rightarrow N$ and R-module map $f: F \rightarrow N$ there is an R-module map g lifting f in the sense that the diagram

commutes. (Note that g is not required to be unique.) Show that P is projective if and only if P is a direct summand of a free R-module (i.e., there is an R-module Q such that $P \oplus Q$ is free).
8. Recall that an ideal in a ring R is called prime if $a b \in I$ implies that either $a \in I$ and $b \in I$. Show that in a commutative ring R and ideal I is prime if and only if R / I is an integral domain.
9. Suppose that p is a prime and that $P=p \mathbf{Z}$ is the corresponding prime ideal in \mathbf{Z}. Then \mathbf{Z}_{P} is the ring $S^{-1} \mathbf{Z}$ for $S=\mathbf{Z} \backslash p \mathbf{Z}$. Show that \mathbf{Z}_{P} can be realized as the subring of \mathbf{Q} given by $\left\{\frac{a}{b}: a, b \in \mathbf{Z}, b \neq 0\right.$ and $\left.p \nmid b\right\}$. Show $p=\frac{p}{1}$ is prime in Z_{P} and that every element of \mathbf{Z}_{P} is of the form $p^{\nu} u$ for u a unit in \mathbf{Z}_{P}.
