Math 101 Fall 2013 Homework #2 Due 2 October 2013

1. Let $0 \longrightarrow M' \xrightarrow{i} M \xrightarrow{\pi} M'' \longrightarrow 0$ be a short exact sequence of *R*-modules. Show that if *i* has a retraction $r: M \to M'$, then $M \cong M' \oplus M''$.

2. Let M be an R-module and let $S \subset M$ be a subset. Show that there is a smallest submodule, $\langle S \rangle$, of M containing S. We say that $\langle S \rangle$ is the submodule generated by S. Of course, if $\langle S \rangle = M$, then we say that S generates M. Now let S be any set and F(S) together with $i: S \to F(S)$ a free module on S. Show that F(S) is generated by i(S).

3. Give an example of a group G with subgroups H and K such that $HK = \{hk : h \in H \text{ and } k \in K\}$ is not a subgroup of G. (Groups start to get interesting at $G = S_3$.)

4. Let **Q** be the additive group of rationals. Show that **Q** is indecomposable as a **Z**-module: that is, show that it is not possible to write $\mathbf{Q} \cong A \oplus B$ for **Z**-modules A and B. Conclude that **Q** is not a free **Z**-module.

5. Let \mathbf{Q}^{\times} be the multiplicative group of nonzero rational numbers. Show that as a **Z**-module, $\mathbf{Q}^{\times} \cong (\coprod_{i=1}^{\infty} \mathbf{Z}) \oplus \mathbf{Z}_2$. (First write $\mathbf{Q}^{\times} \cong H \oplus K$ where $H = \{q \in \mathbf{Q}^{\times} : q > 0\}$. Let $\{p_i\}$ be the set of primes in **N** and define $\phi_i : \mathbf{Z} \to H$ by $\phi_i(k) = p_i^k$.)

6. In lecture, we proved that if R is a *commutative* ring, then $R^n \cong R^m$ as R-modules if and only if n = m. If R is not commutative, this is no longer true. Show that if V is a (countably) infinite dimensional k-vector space and if $R = \text{End}_k(V) = \hom_k(V, V)$, then $R \cong R \oplus R$ (as R-modules). (You might want to start by observing that $\hom_k(V, V)$ has a nice ring structure.) 7. An *R*-module *P* is called *projective* if whenever we have an *R*-module epimorphism $v : M \to N$ and *R*-module map $f : F \to N$ there is an *R*-module map g lifting f in the sense that the diagram

commutes. (Note that g is not required to be unique.) Show that P is projective if and only if P is a direct summand of a free R-module (i.e., there is an R-module Q such that $P \oplus Q$ is free).

8. Recall that an ideal in a ring R is called *prime* if $ab \in I$ implies that either $a \in I$ and $b \in I$. Show that in a commutative ring R and ideal I is prime if and only if R/I is an integral domain.

9. Suppose that p is a prime and that $P = p\mathbf{Z}$ is the corresponding prime ideal in \mathbf{Z} . Then \mathbf{Z}_P is the ring $S^{-1}\mathbf{Z}$ for $S = \mathbf{Z} \setminus p\mathbf{Z}$. Show that \mathbf{Z}_P can be realized as the subring of \mathbf{Q} given by $\{\frac{a}{b} : a, b \in \mathbf{Z}, b \neq 0 \text{ and } p \nmid b\}$. Show $p = \frac{p}{1}$ is prime in Z_P and that every element of \mathbf{Z}_P is of the form $p^{\nu}u$ for u a unit in \mathbf{Z}_P .