
Math 101 Fall 2013

Homework #2

Due 2 October 2013

1. Let 0 // M ′ i // M
π // M ′′ // 0 be a short exact sequence of R-modules. Show

that if i has a retraction r : M → M ′, then M ∼= M ′ ⊕M ′′.

ANS: From a result in lecture, it suffices to see that π has a section. For this it suffices to see that
π|ker r is an isomorphism onto M ′′. (Then our section is just the inverse.)

But if m ∈ kerπ ∩ ker r, then m = i(m′). But then m′ = r ◦ i(m′) = 0. Thus, m = 0 and π|ker r
is injective.

But if m′′ ∈ M ′′, then m′′ = π(m) for some m ∈ M . Consider y := m− i ◦ r(m). Then on the
one hand, π(y) = π(m) = m′′. On the other hand, r(y) = r(m) − r(m) = 0. Thus y ∈ ker r, and
π|ker r is surjective. This completes the proof.

2. Let M be an R-module and let S ⊂ M be a subset. Show that there is a smallest
submodule, 〈S〉, of M containing S. We say that 〈S〉 is the submodule generated by S.
Of course, if 〈S〉 = M , then we say that S generates M . Now let S be any set and F (S)
together with i : S → F (S) a free module on S. Show that F (S) is generated by i(S).

ANS: As mentioned in lecture, 〈S〉 is just the intersection of all submodules of M containing S.
Let j : 〈i(S)〉 → F (S) be the inclusion map. The UMP of F (S) says that there is a module map

f : F (S) → 〈i(S)〉 such that the diagram

F (S)

f

��
S

i

==④④④④④④④④④ i //

i !!❈
❈❈

❈❈
❈❈

❈❈
〈i(S)〉

j

��
F (S)

commutes. But the UMP also ensures that j ◦ f is the identity. Hence j is surjective and 〈i(S)〉 =
F (S).

3. Give an example of a group G with subgroups H and K such that HK = {hk :
h ∈ H and k ∈ K } is not a subgroup of G. (Groups start to get interesting at G = S3.)

ANS: Let G = S3 the set of permutations on {1, 2, 3}. Let H = 〈(1 2)〉 and K = 〈(2 3)〉. We have
H ∩K = {1} so |HK| = 4. But 4 ∤ 6 = |G|. Hence HK can’t be a subgroup.
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4. Let Q be the additive group of rationals. Show that Q is indecomposable as a Z-module:
that is, show that it is not possible to write Q ∼= A⊕ B for Z-modules A and B. Conclude
that Q is not a free Z-module.

ANS: Suppose that Q = A ⊕ B as Z-modules. Assuming, as you should, that A and B are both
nonzero, let a

b
∈ A and c

d
∈ B be nonzero rational numbers. Then bc· a

b
= ac ∈ A and ad· c

d
= ac ∈ B.

Since A ∩ B = {0}, we must have ac = 0. But as Z is an integral domain, this forces either a or c
to be zero contradicting our choices above. Thus Q is indecomposable.

If Q were free on more than one generator, then Q would decompose nontrivially. Hence the
only way Q could be free is to be isomorphic to Z as a Z-module. That is, Q would have to be
isomorphic to Z as abelian groups. But this is impossible since every nonzero element in Q has a
“square root”; that is, given x ∈ Q \ {0}, there is a y ∈ Q such that 2 · y = x. But this fails for lots
of elements in Z — for example, 2 · x = 1 has no solution in Z.

5. Let Q× be the multiplicative group of nonzero rational numbers. Show that as a Z-
module, Q× ∼=

(
∐

∞

i=1
Z
)

⊕Z2. (First write Q
× ∼= H ⊕K where H = { q ∈ Q× : q > 0 }. Let

{pi} be the set of primes in N and define φi : Z → H by φi(k) = pki .)

ANS: Since H ∩K = {1} and HK = Q×, we have Q× ∼= H ⊕K as an internal direct sum. Since
K ∼= Z2, it only remains to show that H ∼=

∐

∞

i=1
Z as Z-modules (or as abelian groups). Define the

φi as above and observe that these are Z-module homomorphisms: φi(n +m) = pn+m
i = pni p

m
i =

φi(n)φi(m). Hence the UMP of the coproduct gives us a unique homomorphism φ :
∐

∞

i=1
Z → H

given by

φ
(

(ei)
)

=

∞
∏

i=1

φi(ei) = pe11 p
e2
2 · · ·

which makes sense since all but finitely many terms in the two products are 1. However, by the
fundamental theorem of arithmetic, every n ∈ Z factors uniquely as pe11 p

e2
2 · · · where the ei ≥ 1 and

only finitely many are not equal to 1. But any positive rational number has the form r = n
m

with

(n,m) = 1. Thus if we write n as above and m = p
f1
1 p

f2
2 · · · , then for each i at most one of ei and

fi are different from 1. It follows that r has a unique expression as pe11 p
e2
2 · · · where now the ei are

integers all but finitely many of which are 1. It now follows that φ is a bijection. This completes the
proof.

6. In lecture, we proved that if R is a commutative ring, then Rn ∼= Rm as R-modules if
and only if n = m. If R is not commutative, this is no longer true. Show that if V is a
(countably) infinite dimensional k-vector space and if R = Endk(V ) = homk(V, V ), then
R ∼= R ⊕ R (as R-modules). (You might want to start by observing that homk(V, V ) has a
nice ring structure.)

ANS: Let V be a k-vector space of countably infinite dimension with basis β = { ei }
∞

i=1. First
we observe that homk(V, V ) is just the set of linear maps from V to itself. Hence it has an obvious
vector space structure and a ring structure (multiplication is given by composition). The vector
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space direct sum V ⊕ V has basis {(ei, 0)} ∪ {(0, ej)}
∞

j=1. Then we get a vector space isomorphism
φ : V ⊕ V → V by defining

φ(ei, 0) = e2i and φ(0, ej) = e2j−1,

and extending linearly. This induces a vector space isomorphism φ∗ : homk(V, V ) → homk(V ⊕V, V )
given by T 7→ T ◦ φ.

Similarly, from a previous homework problem, we have a vector space isomorphism

σ : homk(V ⊕ V, V ) → homk(V, V )⊕ homk(V, V )

given by f 7→ (f ◦ i1, f ◦ i2) for the natural inclusions ij : V → V ⊕ V . Thus by compostion we
obtain a vector space isomorphism ψ : homk(V, V ) → homk(V, V )⊕ homk(V, V ) given by

homk(V, V )
φ∗

// homk(V ⊕ V, V )
σ // homk(V, V )⊕ homk(V, V ) :

thus, ψ(T ) = (T ◦ φ ◦ i1, T ◦ φ ◦ i2).
Now we consider R = homk(V, V ) as a ring. Then ψ will be a R-module map if it preserves the

R-action. The R action on R is just multiplication and on R⊕R is given by multiplication in each
coordinate. But

φ(S · T ) = φ(ST ) = (ST ◦ φ ◦ i1, ST ◦ φ ◦ i2) = S · (T ◦ φ ◦ i1, T ◦ φ ◦ i2) = S · ψ(T ).

This completes the proof.

7. An R-module P is called projective if whenever we have an R-module epimorphism v :
M → N and R-module map f : F → N there is an R-module map g lifting f in the sense
that the diagram

M

v

��
P

g
>>

f
// N

��
0

commutes. (Note that g is not required to be unique.) Show that P is projective if and only
if P is a direct summand of a free R-module (i.e., there is an R-module Q such that P ⊕Q
is free).

ANS: First, suppose that P is projective. Since P is an R-module, there is a free module F and a
surjection v : F → P . Then there is a map g such that the diagram

F

v
����

P

g

??⑦⑦⑦⑦⑦⑦⑦⑦
id // P
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commutes. But then the short exact sequence

0 // ker v // F
v // P // 0

has a section, namely g, for v. Hence F ∼= ker v ⊕ P .
For the converse, we first prove a lemma:

Lemma. Free modules are projective.

Proof. Suppose F = F (S) with i : S → F (S) the universal map. Suppose that v : N → M is a surjective
module map with f : F (S) → M another module map. Since v is surjective, given s ∈ S, let j(s) ∈ N be
such that v(j(s)) = f(i(s)). By the UMP of i : S → F (S) there is a module map g such that

S
j //

i

��

M

F (S)

g

<<②②②②②②②②

commutes. Note that g ◦ v = f on i(S). But the set of m ∈ F (S) where two module maps coincide is a
submodule. Hence g ◦ v and f agree on 〈i(S)〉 = F (S). This shows that F (S) is projective.

Now suppose there is an R-module Q such that P ◦Q is free. Suppose v : N →M is surjective
and that f : P → M is a module map. Then, since P ◦ Q is projective, we get module map
g′ : P ⊕Q→ N such that the diagram

N

v
����

P ⊕Q

g′

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠

π1

// P
f

//

i1

YY M

commutes. But then v ◦ g′ ◦ i1 = f ◦ π1 ◦ i1 = f . Hence g = g′ ◦ i1 lifts f to N as required. That is,
P is projective.

8. Recall that an ideal in a ring R is called prime if ab ∈ I implies that either a ∈ I and
b ∈ I. Show that in a commutative ring R and ideal I is prime if and only if R/I is an
integral domain.

ANS: Check your favorite undergrad algebra text.
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9. Suppose that p is a prime and that P = pZ is the corresponding prime ideal in Z. Then
ZP is the ring S−1Z for S = Z \ pZ. Show that ZP can be realized as the subring of Q given
by { a

b
: a, b ∈ Z, b 6= 0 and p ∤ b }. Show p = p

1
is prime in ZP and that every element of ZP

is of the form pνu for u a unit in ZP .

ANS: Let R = { a
b
: a, b ∈ Z, b 6= 0 and p ∤ b }, and let i : Z → R be the inclusion map. I claim that

i has the UMP for S−1Z. Let f : Z → A be a ring map for which F (S) ⊂ A×. We want to define
f̃ : R → A by f̃(a

b
) = f(a)f(b)−1. The right-hand side makes sense since b ∈ S and f(S) ⊂ A×. To

see that f̃ is well defined, suppose that a
b
= c

d
. Then ad = bc and f(a)f(d) = f(b)f(c). It follows

that f(a)f(b)−1 = f(c)f(d)−1. Thus f̃ is well defined. It is easy to see that it is a ring map. For
example,

f̃
(a

b
+
c

d

)

= f
(ad+ bc

bd

)

= f(ad+ bc)f(bd)−1

= f(a)f(b)−1 + f(c)f(d)−1

= f̃(
a

b
) + f̃(

c

d
).

To see that p is a prime, suppose that p divides a
b
· c
d
. Then ac

bc
= p

1
· e
f
. In particular, fac = pef .

Since p ∤ f , we must have p | ac. Thus p divides a or c and hence a
b
or c

d
. This proves that p is prime

in R.
Now if a

b
is any element of R, we can, using the Fundamental Theorem of Arithmetic, write

a = pνc where p ∤ c. But the a
b
= pν c

b
and c

b
is a unit with inverse d

c
. This establishes the last

assertion.
This last assertion says that p is the only prime in R.
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