Math 101 Fall 2013
Homework #2
Due 2 October 2013

1. Let 0 M —s M —" M" 0 be a short exact sequence of R-modules. Show
that if ¢ has a retraction r : M — M’, then M = M’ & M”".

ANS: From a result in lecture, it suffices to see that 7 has a section. For this it suffices to see that
T|ker 1S an isomorphism onto M”. (Then our section is just the inverse.)

But if m € kerm Nkerr, then m = i(m’). But then m’ = r o i(m’) = 0. Thus, m = 0 and 7|ker»
is injective.

But if m” € M”, then m” = w(m) for some m € M. Consider y := m — i o r(m). Then on the
one hand, n(y) = m(m) = m”. On the other hand, r(y) = r(m) — r(m) = 0. Thus y € kerr, and
T|ker » 18 surjective. This completes the proof.

2. Let M be an R-module and let S C M be a subset. Show that there is a smallest
submodule, (S), of M containing S. We say that (S) is the submodule generated by S.
Of course, if (S) = M, then we say that S generates M. Now let S be any set and F'(5)
together with i : S — F(S) a free module on S. Show that F'(S) is generated by i(.5).
ANS: As mentioned in lecture, (S) is just the intersection of all submodules of M containing S.

Let j : (i(S)) — F(S) be the inclusion map. The UMP of F'(S) says that there is a module map
f:F(S)— (i(9)) such that the diagram

F(S)
/ '
S (i(S))

3

i(£)
|

7

F(S)

commutes. But the UMP also ensures that j o f is the identity. Hence j is surjective and (i(S)) =
F(S).

3. Give an example of a group G with subgroups H and K such that HK = {hk :
h € H and k € K } is not a subgroup of G. (Groups start to get interesting at G = S3.)

ANS: Let G = S3 the set of permutations on {1,2,3}. Let H = {(1 2)) and K = ((2 3)). We have
HNK ={1}so |[HK|=4. But 416 = |G|. Hence HK can’t be a subgroup.



4. Let Q be the additive group of rationals. Show that Q is indecomposable as a Z-module:
that is, show that it is not possible to write Q = A @ B for Z-modules A and B. Conclude
that Q is not a free Z-module.

ANS: Suppose that Q = A @ B as Z-modules. Assuming, as you should, that A and B are both
nonzero, let § € Aand § € B be nonzero rational numbers. Then be-§ = ac € Aand ad-§ = ac € B.
Since AN B = {0}, we must have ac = 0. But as Z is an integral domain, this forces either a or ¢
to be zero contradicting our choices above. Thus Q is indecomposable.

If Q were free on more than one generator, then Q would decompose nontrivially. Hence the
only way Q could be free is to be isomorphic to Z as a Z-module. That is, Q would have to be
isomorphic to Z as abelian groups. But this is impossible since every nonzero element in Q has a
“square root”; that is, given z € Q \ {0}, there is a y € Q such that 2 -y = 2. But this fails for lots
of elements in Z — for example, 2 - x = 1 has no solution in Z.

5. Let Q* be the multiplicative group of nonzero rational numbers. Show that as a Z-
module, Q* = (T[], Z) ® Z,. (First write Q* = H® K where H = {q € Q*:¢>0}. Let
{pi} be the set of primes in N and define ¢; : Z — H by ¢;(k) = pF.)

ANS: Since HNK = {1} and HK = Q*, we have Q* = H @ K as an internal direct sum. Since
K =~ Z5, it only remains to show that H = [[°, Z as Z-modules (or as abelian groups). Define the
¢; as above and observe that these are Z-module homomorphisms: ¢;(n + m) = p;”m = pl'pi" =
#i(n)¢i(m). Hence the UMP of the coproduct gives us a unique homomorphism ¢ : [[72, Z — H

given by
¢((e)) = [ #i(es) = pips? - --
=1

which makes sense since all but finitely many terms in the two products are 1. However, by the

fundamental theorem of arithmetic, every n € Z factors uniquely as p7*p5? - - - where the e; > 1 and

only finitely many are not equal to 1. But any positive rational number has the form r = > with

(n,m) = 1. Thus if we write n as above and m = p{lpg‘z -+, then for each 7 at most one of e; and
fi are different from 1. It follows that r has a unique expression as pi'p5? - -+ where now the e; are
integers all but finitely many of which are 1. It now follows that ¢ is a bijection. This completes the

proof.
6. In lecture, we proved that if R is a commutative ring, then R® = R™ as R-modules if
and only if n = m. If R is not commutative, this is no longer true. Show that if V is a
(countably) infinite dimensional k-vector space and if R = Endg(V) = homy(V,V), then
R = R® R (as R-modules). (You might want to start by observing that homg(V, V) has a
nice ring structure.)

ANS: Let V be a k-vector space of countably infinite dimension with basis 8 = {e; }32,. First

we observe that homy(V, V) is just the set of linear maps from V to itself. Hence it has an obvious
vector space structure and a ring structure (multiplication is given by composition). The vector



space direct sum V & V' has basis {(e;,0)} U {(0,¢;)}32;. Then we get a vector space isomorphism
¢: VeV =V by defining

#(ei,0) = ey and  ¢(0,e;) = egj_1,

and extending linearly. This induces a vector space isomorphism ¢* : homy(V, V) — homg (Ve V, V)
given by T +— T o ¢.
Similarly, from a previous homework problem, we have a vector space isomorphism

o : homg(V @V, V) — homg(V, V) @ homy (V, V)
given by f — (f oy, f oig) for the natural inclusions i; : V' — V @ V. Thus by compostion we

obtain a vector space isomorphism 1 : homg(V, V) — homy(V, V) @ homy(V, V) given by

homy (V, V) L homy (V@ V, V) 75 homy (V, V) @ hom(V, V) :

thus, (T) = (T ogpoiy, T opois).

Now we consider R = homg(V,V) as a ring. Then ¢ will be a R-module map if it preserves the
R-action. The R action on R is just multiplication and on R @ R is given by multiplication in each
coordinate. But

(S -T)=¢(ST) = (ST o¢oi,STogoiz) =5 -(T'opoir,Topoiz) =S (T).
This completes the proof.
7. An R-module P is called projective if whenever we have an R-module epimorphism v :

M — N and R-module map f : I — N there is an R-module map g lifting f in the sense
that the diagram

M
gfi“
0

commutes. (Note that g is not required to be unique.) Show that P is projective if and only
if P is a direct summand of a free R-module (i.e., there is an R-module @) such that P & @
is free).

ANS: First, suppose that P is projective. Since P is an R-module, there is a free module F' and a
surjection v : F' — P. Then there is a map g such that the diagram

F
Ve
p—d.p



commutes. But then the short exact sequence

0 ker v F—2>P 0

has a section, namely g, for v. Hence F' = kerv @ P.
For the converse, we first prove a lemma:

Lemma. Free modules are projective.

Proof. Suppose F = F(S) with ¢ : S — F(S) the universal map. Suppose that v : N — M is a surjective
module map with f : F(S) — M another module map. Since v is surjective, given s € S, let j(s) € N be
such that v(j(s)) = f(i(s)). By the UMP of i : S — F(S) there is a module map g such that

S o m

A

F(S)

commutes. Note that gov = f on i(S). But the set of m € F(S) where two module maps coincide is a
submodule. Hence g o v and f agree on (i(S)) = F(S). This shows that F(S) is projective. O

Now suppose there is an R-module @ such that P o @ is free. Suppose v : N — M is surjective
and that f : P — M is a module map. Then, since P o @ is projective, we get module map

g : P®Q — N such that the diagram
N
/ iv
M

PPQ——P——
woon

i1

commutes. But then vo g’ oi; = fom oi; = f. Hence g = ¢’ 04 lifts f to N as required. That is,
P is projective.

8. Recall that an ideal in a ring R is called prime if ab € I implies that either a € I and
b € I. Show that in a commutative ring R and ideal [ is prime if and only if R/I is an
integral domain.

ANS: Check your favorite undergrad algebra text.



9. Suppose that p is a prime and that P = pZ is the corresponding prime ideal in Z. Then
Zp is the ring S7'Z for S = Z\ pZ. Show that Zp can be realized as the subring of Q given
by {$:a,6€Z,b#0and p{b}. Show p=%is primein Zp and that every element of Zp
is of the form p“u for w a unit in Zp.

ANS: Let R={%:a,bcZ,b#0and pfb}, andleti: Z — R be the inclusion map. I claim that

i has the UMP for S7'Z. Let f : Z — A be a ring map for which F(S) C A*. We want to define
f:R— Aby f($)= f(a)f(b)~'. The right-hand side makes sense since b € S and f(S) C A*. To

see that f is well defined, suppose that % = <. Then ad = bc and f(a)f(d) = f(b)f(c). It follows

that f(a)f(b)~* = f(¢)f(d)~!. Thus f is welcf defined. Tt is easy to see that it is a ring map. For
example,
4 C ad + bc
f(g + E) = f( bd )
= f(ad + be) f(bd) ™"
= f(@) f)~ + fle)f(d)~
sa s C
= i+ 7).

To see that p is a prime, suppose that p divides - 5. Then £ = £ - ? In particular, fac = pef.

Since p { f, we must have p | ac. Thus p divides a or ¢ and hence ¢ or §. This proves that p is prime
in R.

Now if # is any element of R, we can, using the Fundamental Theorem of Arithmetic, write
a = pYc where p { c. But the $ = p”7 and { is a unit with inverse %. This establishes the last
assertion.

This last assertion says that p is the only prime in R.



