Math 101 Fall 2013 Homework #2 Due 2 October 2013

1. Let $0 \longrightarrow M' \xrightarrow{i} M \xrightarrow{\pi} M'' \longrightarrow 0$ be a short exact sequence of *R*-modules. Show that if *i* has a retraction $r: M \to M'$, then $M \cong M' \oplus M''$.

ANS: From a result in lecture, it suffices to see that π has a section. For this it suffices to see that $\pi|_{\ker r}$ is an isomorphism onto M''. (Then our section is just the inverse.)

But if $m \in \ker \pi \cap \ker r$, then m = i(m'). But then $m' = r \circ i(m') = 0$. Thus, m = 0 and $\pi|_{\ker r}$ is injective.

But if $m'' \in M''$, then $m'' = \pi(m)$ for some $m \in M$. Consider $y := m - i \circ r(m)$. Then on the one hand, $\pi(y) = \pi(m) = m''$. On the other hand, r(y) = r(m) - r(m) = 0. Thus $y \in \ker r$, and $\pi|_{\ker r}$ is surjective. This completes the proof.

2. Let M be an R-module and let $S \subset M$ be a subset. Show that there is a smallest submodule, $\langle S \rangle$, of M containing S. We say that $\langle S \rangle$ is the submodule generated by S. Of course, if $\langle S \rangle = M$, then we say that S generates M. Now let S be any set and F(S) together with $i: S \to F(S)$ a free module on S. Show that F(S) is generated by i(S).

ANS: As mentioned in lecture, $\langle S \rangle$ is just the intersection of all submodules of M containing S. Let $j : \langle i(S) \rangle \to F(S)$ be the inclusion map. The UMP of F(S) says that there is a module map $f : F(S) \to \langle i(S) \rangle$ such that the diagram

commutes. But the UMP also ensures that $j \circ f$ is the identity. Hence j is surjective and $\langle i(S) \rangle = F(S)$.

3. Give an example of a group G with subgroups H and K such that $HK = \{hk : h \in H \text{ and } k \in K\}$ is not a subgroup of G. (Groups start to get interesting at $G = S_3$.)

ANS: Let $G = S_3$ the set of permutations on $\{1, 2, 3\}$. Let $H = \langle (1 \ 2) \rangle$ and $K = \langle (2 \ 3) \rangle$. We have $H \cap K = \{1\}$ so |HK| = 4. But $4 \nmid 6 = |G|$. Hence HK can't be a subgroup.

4. Let **Q** be the additive group of rationals. Show that **Q** is indecomposable as a **Z**-module: that is, show that it is not possible to write $\mathbf{Q} \cong A \oplus B$ for **Z**-modules A and B. Conclude that **Q** is not a free **Z**-module.

ANS: Suppose that $\mathbf{Q} = A \oplus B$ as **Z**-modules. Assuming, as you should, that A and B are both nonzero, let $\frac{a}{b} \in A$ and $\frac{c}{d} \in B$ be nonzero rational numbers. Then $bc \cdot \frac{a}{b} = ac \in A$ and $ad \cdot \frac{c}{d} = ac \in B$. Since $A \cap B = \{0\}$, we must have ac = 0. But as **Z** is an integral domain, this forces either a or c to be zero contradicting our choices above. Thus **Q** is indecomposable.

If **Q** were free on more than one generator, then **Q** would decompose nontrivially. Hence the only way **Q** could be free is to be isomorphic to **Z** as a **Z**-module. That is, **Q** would have to be isomorphic to **Z** as abelian groups. But this is impossible since every nonzero element in **Q** has a "square root"; that is, given $x \in \mathbf{Q} \setminus \{0\}$, there is a $y \in \mathbf{Q}$ such that $2 \cdot y = x$. But this fails for lots of elements in Z — for example, $2 \cdot x = 1$ has no solution in **Z**.

5. Let \mathbf{Q}^{\times} be the multiplicative group of nonzero rational numbers. Show that as a **Z**-module, $\mathbf{Q}^{\times} \cong (\coprod_{i=1}^{\infty} \mathbf{Z}) \oplus \mathbf{Z}_2$. (First write $\mathbf{Q}^{\times} \cong H \oplus K$ where $H = \{q \in \mathbf{Q}^{\times} : q > 0\}$. Let $\{p_i\}$ be the set of primes in **N** and define $\phi_i : \mathbf{Z} \to H$ by $\phi_i(k) = p_i^k$.)

ANS: Since $H \cap K = \{1\}$ and $HK = \mathbf{Q}^{\times}$, we have $\mathbf{Q}^{\times} \cong H \oplus K$ as an internal direct sum. Since $K \cong \mathbf{Z}_2$, it only remains to show that $H \cong \coprod_{i=1}^{\infty} \mathbf{Z}$ as **Z**-modules (or as abelian groups). Define the ϕ_i as above and observe that these are **Z**-module homomorphisms: $\phi_i(n+m) = p_i^{n+m} = p_i^n p_i^m = \phi_i(n)\phi_i(m)$. Hence the UMP of the coproduct gives us a unique homomorphism $\phi : \coprod_{i=1}^{\infty} \mathbf{Z} \to H$ given by

$$\phi((e_i)) = \prod_{i=1}^{\infty} \phi_i(e_i) = p_1^{e_1} p_2^{e_2} \cdots$$

which makes sense since all but finitely many terms in the two products are 1. However, by the fundamental theorem of arithmetic, every $n \in Z$ factors uniquely as $p_1^{e_1} p_2^{e_2} \cdots$ where the $e_i \ge 1$ and only finitely many are not equal to 1. But any positive rational number has the form $r = \frac{n}{m}$ with (n,m) = 1. Thus if we write n as above and $m = p_1^{f_1} p_2^{f_2} \cdots$, then for each i at most one of e_i and f_i are different from 1. It follows that r has a unique expression as $p_1^{e_1} p_2^{e_2} \cdots$ where now the e_i are integers all but finitely many of which are 1. It now follows that ϕ is a bijection. This completes the proof.

6. In lecture, we proved that if R is a *commutative* ring, then $R^n \cong R^m$ as R-modules if and only if n = m. If R is not commutative, this is no longer true. Show that if V is a (countably) infinite dimensional k-vector space and if $R = \text{End}_k(V) = \hom_k(V, V)$, then $R \cong R \oplus R$ (as R-modules). (You might want to start by observing that $\hom_k(V, V)$ has a nice ring structure.)

ANS: Let V be a k-vector space of countably infinite dimension with basis $\beta = \{e_i\}_{i=1}^{\infty}$. First we observe that $\hom_k(V, V)$ is just the set of linear maps from V to itself. Hence it has an obvious vector space structure and a ring structure (multiplication is given by composition). The vector

space direct sum $V \oplus V$ has basis $\{(e_i, 0)\} \cup \{(0, e_j)\}_{j=1}^{\infty}$. Then we get a vector space isomorphism $\phi: V \oplus V \to V$ by defining

$$\phi(e_i, 0) = e_{2i}$$
 and $\phi(0, e_j) = e_{2j-1}$,

and extending linearly. This induces a vector space isomorphism ϕ^* : $\hom_k(V, V) \to \hom_k(V \oplus V, V)$ given by $T \mapsto T \circ \phi$.

Similarly, from a previous homework problem, we have a vector space isomorphism

 $\sigma: \hom_k(V \oplus V, V) \to \hom_k(V, V) \oplus \hom_k(V, V)$

given by $f \mapsto (f \circ i_1, f \circ i_2)$ for the natural inclusions $i_j : V \to V \oplus V$. Thus by composition we obtain a vector space isomorphism $\psi : \hom_k(V, V) \to \hom_k(V, V) \oplus \hom_k(V, V)$ given by

$$\hom_k(V,V) \xrightarrow{\phi^*} \hom_k(V \oplus V,V) \xrightarrow{\sigma} \hom_k(V,V) \oplus \hom_k(V,V) :$$

thus, $\psi(T) = (T \circ \phi \circ i_1, T \circ \phi \circ i_2).$

Now we consider $R = \hom_k(V, V)$ as a ring. Then ψ will be a *R*-module map if it preserves the *R*-action. The *R* action on *R* is just multiplication and on $R \oplus R$ is given by multiplication in each coordinate. But

$$\phi(S \cdot T) = \phi(ST) = (ST \circ \phi \circ i_1, ST \circ \phi \circ i_2) = S \cdot (T \circ \phi \circ i_1, T \circ \phi \circ i_2) = S \cdot \psi(T)$$

This completes the proof.

7. An *R*-module *P* is called *projective* if whenever we have an *R*-module epimorphism $v : M \to N$ and *R*-module map $f : F \to N$ there is an *R*-module map *g* lifting *f* in the sense that the diagram

commutes. (Note that g is not required to be unique.) Show that P is projective if and only if P is a direct summand of a free R-module (i.e., there is an R-module Q such that $P \oplus Q$ is free).

ANS: First, suppose that *P* is projective. Since *P* is an *R*-module, there is a free module *F* and a surjection $v: F \to P$. Then there is a map *g* such that the diagram

commutes. But then the short exact sequence

 $0 \longrightarrow \ker v \longrightarrow F \xrightarrow{v} P \longrightarrow 0$

has a section, namely g, for v. Hence $F \cong \ker v \oplus P$. For the converse, we first prove a lemma:

Lemma. Free modules are projective.

Proof. Suppose F = F(S) with $i: S \to F(S)$ the universal map. Suppose that $v: N \to M$ is a surjective module map with $f: F(S) \to M$ another module map. Since v is surjective, given $s \in S$, let $j(s) \in N$ be such that v(j(s)) = f(i(s)). By the UMP of $i: S \to F(S)$ there is a module map g such that

commutes. Note that $g \circ v = f$ on i(S). But the set of $m \in F(S)$ where two module maps coincide is a submodule. Hence $g \circ v$ and f agree on $\langle i(S) \rangle = F(S)$. This shows that F(S) is projective.

Now suppose there is an *R*-module Q such that $P \circ Q$ is free. Suppose $v : N \to M$ is surjective and that $f : P \to M$ is a module map. Then, since $P \circ Q$ is projective, we get module map $g' : P \oplus Q \to N$ such that the diagram

commutes. But then $v \circ g' \circ i_1 = f \circ \pi_1 \circ i_1 = f$. Hence $g = g' \circ i_1$ lifts f to N as required. That is, P is projective.

8. Recall that an ideal in a ring R is called *prime* if $ab \in I$ implies that either $a \in I$ and $b \in I$. Show that in a commutative ring R and ideal I is prime if and only if R/I is an integral domain.

ANS: Check your favorite undergrad algebra text.

9. Suppose that p is a prime and that $P = p\mathbf{Z}$ is the corresponding prime ideal in \mathbf{Z} . Then \mathbf{Z}_P is the ring $S^{-1}\mathbf{Z}$ for $S = \mathbf{Z} \setminus p\mathbf{Z}$. Show that \mathbf{Z}_P can be realized as the subring of \mathbf{Q} given by $\{\frac{a}{b} : a, b \in \mathbf{Z}, b \neq 0 \text{ and } p \nmid b\}$. Show $p = \frac{p}{1}$ is prime in Z_P and that every element of \mathbf{Z}_P is of the form $p^{\nu}u$ for u a unit in \mathbf{Z}_P .

ANS: Let $R = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \text{ and } p \nmid b \}$, and let $i : \mathbb{Z} \to R$ be the inclusion map. I claim that i has the UMP for $S^{-1}\mathbb{Z}$. Let $f : \mathbb{Z} \to A$ be a ring map for which $F(S) \subset A^{\times}$. We want to define $\tilde{f} : R \to A$ by $\tilde{f}(\frac{a}{b}) = f(a)f(b)^{-1}$. The right-hand side makes sense since $b \in S$ and $f(S) \subset A^{\times}$. To see that \tilde{f} is well defined, suppose that $\frac{a}{b} = \frac{c}{d}$. Then ad = bc and f(a)f(d) = f(b)f(c). It follows that $f(a)f(b)^{-1} = f(c)f(d)^{-1}$. Thus \tilde{f} is well defined. It is easy to see that it is a ring map. For example,

$$\tilde{f}\left(\frac{a}{b} + \frac{c}{d}\right) = f\left(\frac{ad + bc}{bd}\right)$$
$$= f(ad + bc)f(bd)^{-1}$$
$$= f(a)f(b)^{-1} + f(c)f(d)^{-1}$$
$$= \tilde{f}\left(\frac{a}{b}\right) + \tilde{f}\left(\frac{c}{d}\right).$$

To see that p is a prime, suppose that p divides $\frac{a}{b} \cdot \frac{c}{d}$. Then $\frac{ac}{bc} = \frac{p}{1} \cdot \frac{e}{f}$. In particular, fac = pef. Since $p \nmid f$, we must have $p \mid ac$. Thus p divides a or c and hence $\frac{a}{b}$ or $\frac{c}{d}$. This proves that p is prime in R.

Now if $\frac{a}{b}$ is any element of R, we can, using the Fundamental Theorem of Arithmetic, write $a = p^{\nu}c$ where $p \nmid c$. But the $\frac{a}{b} = p^{\nu}\frac{c}{b}$ and $\frac{c}{b}$ is a unit with inverse $\frac{d}{c}$. This establishes the last assertion.

This last assertion says that p is the *only* prime in R.