Math 101 Fall 2013
 Homework \#2 Due 2 October 2013

1. Let $0 \longrightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{\pi} M^{\prime \prime} \longrightarrow 0$ be a short exact sequence of R-modules. Show that if i has a retraction $r: M \rightarrow M^{\prime}$, then $M \cong M^{\prime} \oplus M^{\prime \prime}$.

ANS: From a result in lecture, it suffices to see that π has a section. For this it suffices to see that $\left.\pi\right|_{\text {ker } r}$ is an isomorphism onto $M^{\prime \prime}$. (Then our section is just the inverse.)

But if $m \in \operatorname{ker} \pi \cap \operatorname{ker} r$, then $m=i\left(m^{\prime}\right)$. But then $m^{\prime}=r \circ i\left(m^{\prime}\right)=0$. Thus, $m=0$ and $\left.\pi\right|_{\text {ker } r}$ is injective.

But if $m^{\prime \prime} \in M^{\prime \prime}$, then $m^{\prime \prime}=\pi(m)$ for some $m \in M$. Consider $y:=m-i \circ r(m)$. Then on the one hand, $\pi(y)=\pi(m)=m^{\prime \prime}$. On the other hand, $r(y)=r(m)-r(m)=0$. Thus $y \in \operatorname{ker} r$, and $\left.\pi\right|_{\text {ker } r}$ is surjective. This completes the proof.
2. Let M be an R-module and let $S \subset M$ be a subset. Show that there is a smallest submodule, $\langle S\rangle$, of M containing S. We say that $\langle S\rangle$ is the submodule generated by S. Of course, if $\langle S\rangle=M$, then we say that S generates M. Now let S be any set and $F(S)$ together with $i: S \rightarrow F(S)$ a free module on S. Show that $F(S)$ is generated by $i(S)$.

ANS: As mentioned in lecture, $\langle S\rangle$ is just the intersection of all submodules of M containing S.
Let $j:\langle i(S)\rangle \rightarrow F(S)$ be the inclusion map. The UMP of $F(S)$ says that there is a module map $f: F(S) \rightarrow\langle i(S)\rangle$ such that the diagram

commutes. But the UMP also ensures that $j \circ f$ is the identity. Hence j is surjective and $\langle i(S)\rangle=$ $F(S)$.
3. Give an example of a group G with subgroups H and K such that $H K=\{h k$: $h \in H$ and $k \in K\}$ is not a subgroup of G. (Groups start to get interesting at $G=S_{3}$.)

ANS: Let $G=S_{3}$ the set of permutations on $\{1,2,3\}$. Let $H=\langle(12)\rangle$ and $K=\langle(23)\rangle$. We have $H \cap K=\{1\}$ so $|H K|=4$. But $4 \nmid 6=|G|$. Hence $H K$ can't be a subgroup.
4. Let \mathbf{Q} be the additive group of rationals. Show that \mathbf{Q} is indecomposable as a \mathbf{Z}-module: that is, show that it is not possible to write $\mathbf{Q} \cong A \oplus B$ for \mathbf{Z}-modules A and B. Conclude that \mathbf{Q} is not a free \mathbf{Z}-module.

ANS: Suppose that $\mathbf{Q}=A \oplus B$ as \mathbf{Z}-modules. Assuming, as you should, that A and B are both nonzero, let $\frac{a}{b} \in A$ and $\frac{c}{d} \in B$ be nonzero rational numbers. Then $b c \cdot \frac{a}{b}=a c \in A$ and $a d \cdot \frac{c}{d}=a c \in B$. Since $A \cap B=\{0\}$, we must have $a c=0$. But as \mathbf{Z} is an integral domain, this forces either a or c to be zero contradicting our choices above. Thus \mathbf{Q} is indecomposable.

If \mathbf{Q} were free on more than one generator, then \mathbf{Q} would decompose nontrivially. Hence the only way \mathbf{Q} could be free is to be isomorphic to \mathbf{Z} as a \mathbf{Z}-module. That is, \mathbf{Q} would have to be isomorphic to \mathbf{Z} as abelian groups. But this is impossible since every nonzero element in \mathbf{Q} has a "square root"; that is, given $x \in \mathbf{Q} \backslash\{0\}$, there is a $y \in \mathbf{Q}$ such that $2 \cdot y=x$. But this fails for lots of elements in Z - for example, $2 \cdot x=1$ has no solution in \mathbf{Z}.
5. Let \mathbf{Q}^{\times}be the multiplicative group of nonzero rational numbers. Show that as a \mathbf{Z} module, $\mathbf{Q}^{\times} \cong\left(\coprod_{i=1}^{\infty} \mathbf{Z}\right) \oplus \mathbf{Z}_{2}$. (First write $\mathbf{Q}^{\times} \cong H \oplus K$ where $H=\left\{q \in \mathbf{Q}^{\times}: q>0\right\}$. Let $\left\{p_{i}\right\}$ be the set of primes in \mathbf{N} and define $\phi_{i}: \mathbf{Z} \rightarrow H$ by $\phi_{i}(k)=p_{i}^{k}$.)

ANS: Since $H \cap K=\{1\}$ and $H K=\mathbf{Q}^{\times}$, we have $\mathbf{Q}^{\times} \cong H \oplus K$ as an internal direct sum. Since $K \cong \mathbf{Z}_{2}$, it only remains to show that $H \cong \coprod_{i=1}^{\infty} \mathbf{Z}$ as \mathbf{Z}-modules (or as abelian groups). Define the ϕ_{i} as above and observe that these are Z-module homomorphisms: $\phi_{i}(n+m)=p_{i}^{n+m}=p_{i}^{n} p_{i}^{m}=$ $\phi_{i}(n) \phi_{i}(m)$. Hence the UMP of the coproduct gives us a unique homomorphism $\phi: \coprod_{i=1}^{\infty} \mathbf{Z} \rightarrow H$ given by

$$
\phi\left(\left(e_{i}\right)\right)=\prod_{i=1}^{\infty} \phi_{i}\left(e_{i}\right)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots
$$

which makes sense since all but finitely many terms in the two products are 1 . However, by the fundamental theorem of arithmetic, every $n \in Z$ factors uniquely as $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots$ where the $e_{i} \geq 1$ and only finitely many are not equal to 1 . But any positive rational number has the form $r=\frac{n}{m}$ with $(n, m)=1$. Thus if we write n as above and $m=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots$, then for each i at most one of e_{i} and f_{i} are different from 1. It follows that r has a unique expression as $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots$ where now the e_{i} are integers all but finitely many of which are 1 . It now follows that ϕ is a bijection. This completes the proof.
6. In lecture, we proved that if R is a commutative ring, then $R^{n} \cong R^{m}$ as R-modules if and only if $n=m$. If R is not commutative, this is no longer true. Show that if V is a (countably) infinite dimensional k-vector space and if $R=\operatorname{End}_{k}(V)=\operatorname{hom}_{k}(V, V)$, then $R \cong R \oplus R$ (as R-modules). (You might want to start by observing that $\operatorname{hom}_{k}(V, V)$ has a nice ring structure.)

ANS: Let V be a k-vector space of countably infinite dimension with basis $\beta=\left\{e_{i}\right\}_{i=1}^{\infty}$. First we observe that $\operatorname{hom}_{k}(V, V)$ is just the set of linear maps from V to itself. Hence it has an obvious vector space structure and a ring structure (multiplication is given by composition). The vector
space direct sum $V \oplus V$ has basis $\left\{\left(e_{i}, 0\right)\right\} \cup\left\{\left(0, e_{j}\right)\right\}_{j=1}^{\infty}$. Then we get a vector space isomorphism $\phi: V \oplus V \rightarrow V$ by defining

$$
\phi\left(e_{i}, 0\right)=e_{2 i} \quad \text { and } \quad \phi\left(0, e_{j}\right)=e_{2 j-1}
$$

and extending linearly. This induces a vector space isomorphism $\phi^{*}: \operatorname{hom}_{k}(V, V) \rightarrow \operatorname{hom}_{k}(V \oplus V, V)$ given by $T \mapsto T \circ \phi$.

Similarly, from a previous homework problem, we have a vector space isomorphism

$$
\sigma: \operatorname{hom}_{k}(V \oplus V, V) \rightarrow \operatorname{hom}_{k}(V, V) \oplus \operatorname{hom}_{k}(V, V)
$$

given by $f \mapsto\left(f \circ i_{1}, f \circ i_{2}\right)$ for the natural inclusions $i_{j}: V \rightarrow V \oplus V$. Thus by compostion we obtain a vector space isomorphism $\psi: \operatorname{hom}_{k}(V, V) \rightarrow \operatorname{hom}_{k}(V, V) \oplus \operatorname{hom}_{k}(V, V)$ given by

$$
\operatorname{hom}_{k}(V, V) \xrightarrow{\phi^{*}} \operatorname{hom}_{k}(V \oplus V, V) \xrightarrow{\sigma} \operatorname{hom}_{k}(V, V) \oplus \operatorname{hom}_{k}(V, V):
$$

thus, $\psi(T)=\left(T \circ \phi \circ i_{1}, T \circ \phi \circ i_{2}\right)$.
Now we consider $R=\operatorname{hom}_{k}(V, V)$ as a ring. Then ψ will be a R-module map if it preserves the R-action. The R action on R is just multiplication and on $R \oplus R$ is given by multiplication in each coordinate. But

$$
\phi(S \cdot T)=\phi(S T)=\left(S T \circ \phi \circ i_{1}, S T \circ \phi \circ i_{2}\right)=S \cdot\left(T \circ \phi \circ i_{1}, T \circ \phi \circ i_{2}\right)=S \cdot \psi(T)
$$

This completes the proof.
7. An R-module P is called projective if whenever we have an R-module epimorphism v : $M \rightarrow N$ and R-module map $f: F \rightarrow N$ there is an R-module map g lifting f in the sense that the diagram

commutes. (Note that g is not required to be unique.) Show that P is projective if and only if P is a direct summand of a free R-module (i.e., there is an R-module Q such that $P \oplus Q$ is free).

ANS: First, suppose that P is projective. Since P is an R-module, there is a free module F and a surjection $v: F \rightarrow P$. Then there is a map g such that the diagram

commutes. But then the short exact sequence

$$
0 \longrightarrow \operatorname{ker} v \longrightarrow F \xrightarrow{v} P \longrightarrow 0
$$

has a section, namely g, for v. Hence $F \cong \operatorname{ker} v \oplus P$.
For the converse, we first prove a lemma:
Lemma. Free modules are projective.
Proof. Suppose $F=F(S)$ with $i: S \rightarrow F(S)$ the universal map. Suppose that $v: N \rightarrow M$ is a surjective module map with $f: F(S) \rightarrow M$ another module map. Since v is surjective, given $s \in S$, let $j(s) \in N$ be such that $v(j(s))=f(i(s))$. By the UMP of $i: S \rightarrow F(S)$ there is a module map g such that

commutes. Note that $g \circ v=f$ on $i(S)$. But the set of $m \in F(S)$ where two module maps coincide is a submodule. Hence $g \circ v$ and f agree on $\langle i(S)\rangle=F(S)$. This shows that $F(S)$ is projective.

Now suppose there is an R-module Q such that $P \circ Q$ is free. Suppose $v: N \rightarrow M$ is surjective and that $f: P \rightarrow M$ is a module map. Then, since $P \circ Q$ is projective, we get module map $g^{\prime}: P \oplus Q \rightarrow N$ such that the diagram

commutes. But then $v \circ g^{\prime} \circ i_{1}=f \circ \pi_{1} \circ i_{1}=f$. Hence $g=g^{\prime} \circ i_{1}$ lifts f to N as required. That is, P is projective.
8. Recall that an ideal in a ring R is called prime if $a b \in I$ implies that either $a \in I$ and $b \in I$. Show that in a commutative ring R and ideal I is prime if and only if R / I is an integral domain.

ANS: Check your favorite undergrad algebra text.
9. Suppose that p is a prime and that $P=p \mathbf{Z}$ is the corresponding prime ideal in \mathbf{Z}. Then \mathbf{Z}_{P} is the ring $S^{-1} \mathbf{Z}$ for $S=\mathbf{Z} \backslash p \mathbf{Z}$. Show that \mathbf{Z}_{P} can be realized as the subring of \mathbf{Q} given by $\left\{\frac{a}{b}: a, b \in \mathbf{Z}, b \neq 0\right.$ and $\left.p \nmid b\right\}$. Show $p=\frac{p}{1}$ is prime in Z_{P} and that every element of \mathbf{Z}_{P} is of the form $p^{\nu} u$ for u a unit in \mathbf{Z}_{P}.

ANS: Let $R=\left\{\frac{a}{b}: a, b \in \mathbf{Z}, b \neq 0\right.$ and $\left.p \nmid b\right\}$, and let $i: Z \rightarrow R$ be the inclusion map. I claim that i has the UMP for $S^{-1} \mathbf{Z}$. Let $f: Z \rightarrow A$ be a ring map for which $F(S) \subset A^{\times}$. We want to define $\tilde{f}: R \rightarrow A$ by $\tilde{f}\left(\frac{a}{b}\right)=f(a) f(b)^{-1}$. The right-hand side makes sense since $b \in S$ and $f(S) \subset A^{\times}$. To see that \tilde{f} is well defined, suppose that $\frac{a}{b}=\frac{c}{d}$. Then $a d=b c$ and $f(a) f(d)=f(b) f(c)$. It follows that $f(a) f(b)^{-1}=f(c) f(d)^{-1}$. Thus \tilde{f} is well defined. It is easy to see that it is a ring map. For example,

$$
\begin{aligned}
\tilde{f}\left(\frac{a}{b}+\frac{c}{d}\right) & =f\left(\frac{a d+b c}{b d}\right) \\
& =f(a d+b c) f(b d)^{-1} \\
& =f(a) f(b)^{-1}+f(c) f(d)^{-1} \\
& =\tilde{f}\left(\frac{a}{b}\right)+\tilde{f}\left(\frac{c}{d}\right) .
\end{aligned}
$$

To see that p is a prime, suppose that p divides $\frac{a}{b} \cdot \frac{c}{d}$. Then $\frac{a c}{b c}=\frac{p}{1} \cdot \frac{e}{f}$. In particular, $f a c=p e f$. Since $p \nmid f$, we must have $p \mid a c$. Thus p divides a or c and hence $\frac{a}{b}$ or $\frac{c}{d}$. This proves that p is prime in R.

Now if $\frac{a}{b}$ is any element of R, we can, using the Fundamental Theorem of Arithmetic, write $a=p^{\nu} c$ where $p \nmid c$. But the $\frac{a}{b}=p^{\nu} \frac{c}{b}$ and $\frac{c}{b}$ is a unit with inverse $\frac{d}{c}$. This establishes the last assertion.

This last assertion says that p is the only prime in R.

