Math 101 Fall 2013
 First Homework Due Wednesday September 25, 2013

1. Recall that if k is a field and $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for a k-vector space V, then there is a vector space isomorphism $\Phi: V \rightarrow k^{n}$ given by sending $v \in V$ to its coordinate vector $[v]_{\beta}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$ where the c_{i} are the unique scalars such that $v=c_{1} v_{1}+\cdots+c_{n} v_{n}$. If W is another k-vector space with basis $\alpha=\left\{w_{1}, \ldots, w_{m}\right\}$ and if $T: V \rightarrow W$ is a linear transformation, then by definition $[T]_{\beta}^{\alpha}$ is the $m \times n$ matrix whose $j^{\text {th }}$ column is $\left[T v_{j}\right]_{\alpha}$. Recall that if $A=\left(a_{i j}\right)$ is a $m \times n$ matrix and $B=\left(b_{i j}\right)$ is a $n \times p$ matrix then $A B$ is the $m \times p$ matrix $\left(c_{i j}\right)$ with $c_{i j}=\sum_{k} a_{i k} b_{k j}$. You may want to use the observation (after having checked it without including it in your homework write-up) that the $j^{\text {th }}$ column of $A B$ is $A c$ where c is the $j^{\text {th }}$ column of B.
(a) Let V, W, β, α and T be as above. Show that

$$
[T v]=[T]_{\beta}^{\alpha}[v]_{\beta} .
$$

(b) Suppose that $\gamma=\left\{z_{1}, \ldots, z_{p}\right\}$ is a basis for a k-vector space Z and that $S: W \rightarrow Z$ is linear. Show that

$$
[S T]_{\beta}^{\gamma}=[S]_{\alpha}^{\gamma}[T]_{\beta}^{\alpha} .
$$

(c) Let $F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection across the line $y=(\tan \theta) x$. Let $\sigma=\left\{e_{1}, e_{2}\right\}$ be the standard basis for \mathbf{R}^{2}. Find $[F]_{\sigma}^{\sigma}$. (I suggest the following. Let $u=(\cos \theta, \sin \theta)$ and $w=(-\sin \theta, \cos \theta)$. Then $\beta=\{u, w\}$ is a basis for \mathbf{R}^{2} and since $F(u)=u$ and $F(w)=-w$, the matrix $[F]_{\beta}^{\beta}$ has a particularly simple form. But by part (b) above,

$$
[F]_{\sigma}^{\sigma}=[I]_{\beta}^{\sigma}[F]_{\beta}^{\beta}[I]_{\sigma}^{\beta}
$$

where $I: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is the identity map. However one of $[I]_{\beta}^{\sigma}$ and $[I]_{\sigma}^{\beta}$ is easy to compute and the other is its inverse. For your final answer, you should employ the sum formulas for \sin and cos.)
2. Let $\left\{X_{\alpha}\right\}_{\alpha \in A}$ be a collection of sets (a.k.a. a "set of sets", which just sounds awful to me). Let

$$
C:=\left\{(\alpha, x) \in A \times \bigcup_{\alpha \in A} X_{\alpha}: x \in X_{\alpha}\right\} .
$$

(Because we can identify X_{α} with $\left\{(\alpha, x): x \in X_{\alpha}\right\}, C$ is sometimes called the disjoint union of the X_{α}. For example, think about the case where the X_{α} are all the same. Then C is quite different from the union.) Show that in the category of sets and functions, the coproducts exist and are given by the disjoint union.
3. Let \mathscr{C} be a category in which products and coproducts exist. Recall that hom $\mathscr{C}(X, Y)$ is a set for any pair of objects in \mathscr{C}. Show that there is a unique isomorphism

$$
\phi: \operatorname{hom}_{\mathscr{C}}\left(Y, \prod_{\alpha \in A} X_{\alpha}\right) \rightarrow \prod_{\alpha \in A} \operatorname{hom}_{\mathscr{C}}\left(Y, X_{\alpha}\right)
$$

such that $\pi_{\alpha} \circ \phi(h)=p_{\alpha} \circ h$. (Here π_{α} and p_{α} are the natural projections for the product in category of sets and maps, and for the product in \mathscr{C}, respectively.)

Similarly, show that there is a unique isomorphism

$$
\psi: \operatorname{hom}_{\mathscr{C}}\left(\coprod_{\alpha \in A} X_{\alpha}, Y\right) \rightarrow \prod_{\alpha \in A} \operatorname{hom}_{\mathscr{C}}\left(X_{\alpha}, Y\right)
$$

such that $\pi_{\alpha} \circ \psi(h)=h \circ i_{\alpha}$.
4. Note that in the category of R-modules, we can think of $\bigoplus_{i=1}^{n} M_{i}$ as either the product or the coproduct of the finite set $\left\{M_{1}, \ldots, M_{n}\right\}$. Let $\kappa_{k}: M_{k} \rightarrow \bigoplus_{i=1}^{n} M_{i}$ and $\pi_{k}: \bigoplus_{i=1}^{n} M_{i} \rightarrow M_{k}$ be the natural maps. In this instance, question 3 says we can identify the set $\operatorname{hom}\left(\bigoplus_{i=1}^{n} M_{i}, \bigoplus_{j-1}^{r} N_{j}\right)$ with the set $\bigoplus_{i=1, j=1}^{n, r} \operatorname{hom}\left(M_{i}, N_{j}\right)$; specifically, we identify h with the matrix $[h]=\left(h_{i j}\right)$ where $h_{i j}=\pi_{i} \circ h \circ \kappa_{j} \in \operatorname{hom}\left(M_{j}, N_{i}\right)$. Thus

$$
h\left(m_{1}, \ldots, m_{n}\right)=\left(\sum h_{1 j}\left(m_{j}\right), \sum h_{2 j}\left(m_{j}\right), \ldots, \sum h_{r j}\left(m_{j}\right)\right)
$$

Verify that if $h \in \operatorname{hom}\left(\bigoplus_{i=1}^{n} M_{i}, \bigoplus_{j-1}^{r} N_{j}\right)$ and $k \in \operatorname{hom}\left(\bigoplus_{j-1}^{r} N_{j}, \bigoplus_{k=1}^{s} P_{k}\right)$, then $[k \circ h]=$ $[k][h]$ (with the obvious interpretation of $[k][h]$).
5. Suppose that V and W are finite-dimensional k-vector spaces over the field k. Let $T: V \rightarrow W$ be a linear map. Show that there are bases β of V and α of W such that $[T]_{\beta}^{\alpha}$ is diagonal (i.e., all off-diagonal entries zero) with diagonal entries in $\{0,1\}$. (I used the proof of the rank-nullity theorem as a guide.)
6. Suppose that V is a finite-dimensional k-vector space and that $T: V \rightarrow V$ is linear. Show that V has a basis β such that $[T]_{\beta}^{\beta}$ is diagonal with entries in $\{0,1\}$ (as in question 5) if and only if $T=T^{2}$. Compare with the result from question 5 .
7. Let V and W be k-vector spaces as above. Then $\operatorname{hom}_{k}(V, W)$ is just a fancy way of describing the set of linear maps from V to W. After picking a bases for V and W, we can identify $\operatorname{hom}_{k}(V, W)$ with the set $M_{m \times n}(k)$ of $m \times n$ matrices where $m=\operatorname{dim} W$ and $n=\operatorname{dim} V$. We write $\mathrm{GL}_{m}(k)$ for the invertible $m \times m$-matrices. Recall that A and B in $M_{m \times n}(k)$ are row-equivalent if and only if there is a $P \in \mathrm{GL}_{m}(k)$ such that $P A=B$ and that each such A is row-equivalent to a unique matrix R is row-reduced echelon form.
(a) Define an equivalence relation on $\operatorname{hom}_{k}(V, W)$ so that $T \sim S$ if and only if there is an isomorphism $U: W \rightarrow W$ such that $S=U T$. If k is a finite field with p elements, $\operatorname{dim} V=4$ and $\operatorname{dim} W=2$, then how may equivalence classes are there?
(b) Now define $T \approx S$ if there are isomorphisms $U_{1}: V \rightarrow V$ and $U_{2}: W \rightarrow W$ so that $S=U_{2} T U_{1}$. How many \approx-equivalence classes are there if $\operatorname{dim} V=n$ and $\operatorname{dim} W=m$?

