Math 101 Fall 2013 First Homework Due Wednesday September 25, 2013

1. Recall that if k is a field and $\beta = \{v_1, \ldots, v_n\}$ is a basis for a k-vector space V, then there is a vector space isomorphism $\Phi: V \to k^n$ given by sending $v \in V$ to its coordinate

vector $[v]_{\beta} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$ where the c_i are the unique scalars such that $v = c_1 v_1 + \cdots + c_n v_n$. If

W is another k-vector space with basis $\alpha = \{w_1, \ldots, w_m\}$ and if $T: V \to W$ is a linear transformation, then by definition $[T]^{\alpha}_{\beta}$ is the $m \times n$ matrix whose j^{th} column is $[Tv_j]_{\alpha}$. Recall that if $A = (a_{ij})$ is a $m \times n$ matrix and $B = (b_{ij})$ is a $n \times p$ matrix then AB is the $m \times p$ matrix (c_{ij}) with $c_{ij} = \sum_k a_{ik}b_{kj}$. You may want to use the observation (after having checked it without including it in your homework write-up) that the j^{th} column of AB is Ac where c is the j^{th} column of B.

(a) Let V, W, β, α and T be as above. Show that

$$[Tv] = [T]^{\alpha}_{\beta}[v]_{\beta}.$$

(b) Suppose that $\gamma = \{z_1, \dots, z_p\}$ is a basis for a k-vector space Z and that $S: W \to Z$ is linear. Show that

$$[ST]^{\gamma}_{\beta} = [S]^{\gamma}_{\alpha} [T]^{\alpha}_{\beta}.$$

(c) Let $F: \mathbf{R}^2 \to \mathbf{R}^2$ be reflection across the line $y = (\tan \theta)x$. Let $\sigma = \{e_1, e_2\}$ be the standard basis for \mathbf{R}^2 . Find $[F]^{\sigma}_{\sigma}$. (I suggest the following. Let $u = (\cos \theta, \sin \theta)$ and $w = (-\sin \theta, \cos \theta)$. Then $\beta = \{u, w\}$ is a basis for \mathbf{R}^2 and since F(u) = u and F(w) = -w, the matrix $[F]^{\beta}_{\beta}$ has a particularly simple form. But by part (b) above,

$$[F]^{\sigma}_{\sigma} = [I]^{\sigma}_{\beta} [F]^{\beta}_{\beta} [I]^{\beta}_{\sigma}$$

where $I: \mathbf{R}^2 \to \mathbf{R}^2$ is the identity map. However one of $[I]^{\sigma}_{\beta}$ and $[I]^{\beta}_{\sigma}$ is easy to compute and the other is its inverse. For your final answer, you should employ the sum formulas for sin and cos.)

2. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a collection of sets (a.k.a. a "set of sets", which just sounds awful to me). Let

$$C := \{ (\alpha, x) \in A \times \bigcup_{\alpha \in A} X_{\alpha} : x \in X_{\alpha} \}.$$

(Because we can identify X_{α} with $\{(\alpha, x) : x \in X_{\alpha}\}$, C is sometimes called the *disjoint union* of the X_{α} . For example, think about the case where the X_{α} are all the same. Then C is quite different from the union.) Show that in the category of sets and functions, the coproducts exist and are given by the disjoint union.

3. Let \mathscr{C} be a category in which products and coproducts exist. Recall that $\hom_{\mathscr{C}}(X,Y)$ is a set for any pair of objects in \mathscr{C} . Show that there is a unique isomorphism

$$\phi: \hom_{\mathscr{C}}(Y, \prod_{\alpha \in A} X_{\alpha}) \to \prod_{\alpha \in A} \hom_{\mathscr{C}}(Y, X_{\alpha})$$

such that $\pi_{\alpha} \circ \phi(h) = p_{\alpha} \circ h$. (Here π_{α} and p_{α} are the natural projections for the product in category of sets and maps, and for the product in \mathscr{C} , respectively.)

Similarly, show that there is a unique isomorphism

$$\psi: \hom_{\mathscr{C}}\left(\coprod_{\alpha \in A} X_{\alpha}, Y\right) \to \prod_{\alpha \in A} \hom_{\mathscr{C}}(X_{\alpha}, Y)$$

such that $\pi_{\alpha} \circ \psi(h) = h \circ i_{\alpha}$.

4. Note that in the category of R-modules, we can think of $\bigoplus_{i=1}^n M_i$ as either the product or the coproduct of the finite set $\{M_1,\ldots,M_n\}$. Let $\kappa_k:M_k\to\bigoplus_{i=1}^n M_i$ and $\pi_k:\bigoplus_{i=1}^n M_i\to M_k$ be the natural maps. In this instance, question 3 says we can identify the set $\hom\left(\bigoplus_{i=1}^n M_i,\bigoplus_{j=1}^r N_j\right)$ with the set $\bigoplus_{i=1,j=1}^{n,r} \hom(M_i,N_j)$; specifically, we identify h with the matrix $[h]=(h_{ij})$ where $h_{ij}=\pi_i\circ h\circ\kappa_j\in \hom(M_j,N_i)$. Thus

$$h(m_1, ..., m_n) = \left(\sum h_{1j}(m_j), \sum h_{2j}(m_j), ..., \sum h_{rj}(m_j)\right)$$

Verify that if $h \in \text{hom}\left(\bigoplus_{i=1}^{n} M_i, \bigoplus_{j=1}^{r} N_j\right)$ and $k \in \text{hom}\left(\bigoplus_{j=1}^{r} N_j, \bigoplus_{k=1}^{s} P_k\right)$, then $[k \circ h] = [k][h]$ (with the obvious interpretation of [k][h]).

5. Suppose that V and W are finite-dimensional k-vector spaces over the field k. Let $T:V\to W$ be a linear map. Show that there are bases β of V and α of W such that $[T]^{\alpha}_{\beta}$ is diagonal (i.e., all off-diagonal entries zero) with diagonal entries in $\{0,1\}$. (I used the proof of the rank-nullity theorem as a guide.)

- 6. Suppose that V is a finite-dimensional k-vector space and that $T:V\to V$ is linear. Show that V has a basis β such that $[T]^{\beta}_{\beta}$ is diagonal with entries in $\{0,1\}$ (as in question 5) if and only if $T=T^2$. Compare with the result from question 5.
- 7. Let V and W be k-vector spaces as above. Then $\hom_k(V, W)$ is just a fancy way of describing the set of linear maps from V to W. After picking a bases for V and W, we can identify $\hom_k(V, W)$ with the set $M_{m \times n}(k)$ of $m \times n$ matrices where $m = \dim W$ and $n = \dim V$. We write $\operatorname{GL}_m(k)$ for the invertible $m \times m$ -matrices. Recall that A and B in $M_{m \times n}(k)$ are row-equivalent if and only if there is a $P \in \operatorname{GL}_m(k)$ such that PA = B and that each such A is row-equivalent to a unique matrix R is row-reduced echelon form.
 - (a) Define an equivalence relation on $\hom_k(V, W)$ so that $T \sim S$ if and only if there is an isomorphism $U: W \to W$ such that S = UT. If k is a finite field with p elements, $\dim V = 4$ and $\dim W = 2$, then how may equivalence classes are there?
 - (b) Now define $T \approx S$ if there are isomorphisms $U_1: V \to V$ and $U_2: W \to W$ so that $S = U_2TU_1$. How many \approx -equivalence classes are there if dim V = n and dim W = m?