Dartmouth College

Mathematics 101

Homework 2 (due Wednesday, Oct 4)

- 1. Let G be a cyclic group of order n, and let $d \in \mathbb{Z}_+$ with $d \mid n$. Show that G has exactly d elements of exponent d.
- 2. Let G be a group with subgroups, H, K each of finite index in G. Show that $H \cap K$ has finite index in G by establishing the inequality $(G : H \cap K) \leq (G : H)(G : K)$
- 3. For a group G, the *center* of G, denoted Z_G is defined by: $Z_G = \{x \in G \mid xg = gx \text{ for all } g \in G\}$. Show that if G/Z_G is cyclic, then G is abelian.
- 4. Let Aut(G) denote the group of automorphisms of a group G, and Inn(G) the subgroup of inner automorphisms. That is, $Inn(G) = \{\varphi_g \mid g \in G\}$ where $\varphi_g : G \to G$ is defined by $\varphi_g(x) = gxg^{-1}$.
 - (a) Show that $Inn(G) \trianglelefteq Aut(G)$.
 - (b) Show that $G/Z_G \cong Inn(G)$.
- 5. Let G be a finite group, and assume N is a normal subgroup of G with gcd(|N|, (G : N)) = 1. Show that N is the only subgroup of G of order |N|.