Dartmouth College

Mathematics 101
Homework 6 (due Wednesday, November 17)

1. Localization.
(a) Let $A=\mathbb{Z}$ and $\mathfrak{P}=p \mathbb{Z}$ with p a prime in \mathbb{Z}. We have characterized the localization $A_{\mathfrak{F}}=\mathbb{Z}_{\mathfrak{F}}$ (the localization of \mathbb{Z} at the prime ideal \mathfrak{P}) as $\mathbb{Z}_{\mathfrak{P}}=\{a / b \in \mathbb{Q} \mid a, b \in \mathbb{Z}, p \nmid b\}$. Show that $\mathbb{Z}_{\mathfrak{P}} / p \mathbb{Z}_{\mathfrak{P}} \cong \mathbb{Z} / p \mathbb{Z}$.
(b) Let A be a commutative ring with identity, and S a multiplicative subset of A with $0 \notin S$ (and $1 \in S$). Associated to the localization $S^{-1} A$ is the natural homomorphism $\varphi: A \rightarrow S^{-1} A$ taking a to $a / 1$. For an ideal I of A we have shown that $I \subseteq \varphi^{-1}\left(S^{-1} I\right)$. Find an example of a commutative ring A, a multiplicative set S, and an ideal I of A so that $S^{-1} I$ is a proper ideal of $S^{-1} A$ and $I \neq$ $\varphi^{-1}\left(S^{-1} I\right)$.
2. Let F be a field, and let $a, b \in F^{\times}$. Denote by $A=\left(\frac{a, b}{F}\right)$ the quaternion algebra over F defined as follows: A is a four-dimensional vector space over F with basis $\{1, i, j, k\}$. The basis elements satisfy $i^{2}=a, j^{2}=b, i j=k=-j i$, and the scalars in F commute with all elements of A. In fact F is the center of A. The algebra $\mathbb{H}=\left(\frac{-1,-1}{\mathbb{R}}\right)$ is known as Hamilton's quaternions.
(a) There is a natural involution on A denoted $\alpha \mapsto \bar{\alpha}$ which for scalars w, x, y, z takes $\alpha=w+x i+y j+z k$ to $\bar{\alpha}=w-x i-y j-z k$. Define two maps with domain A called the norm and trace, given by $N(\alpha)=\alpha \bar{\alpha}$, and $\operatorname{Tr}(\alpha)=\alpha+\bar{\alpha}$.
i. Find explicit formulas for the norm and trace in terms of the variables w, x, y, z when $\alpha=w+x i+y j+z k$.
ii. Show that both the norm and trace take values in F, and prove that every element of A is the root of a quadratic equation with coefficients in F.
iii. If $F=\mathbb{R}$, show that A is a division ring if and only if $a<0$ and $b<0$.
(b) Let R be a ring with identity, and let $\alpha \in R$. Consider the evaluation map $\varphi_{\alpha}: R[x] \rightarrow R$ whose domain is the polynomial ring $R[x]$, defined by $\varphi_{\alpha}(f)=$ $f(\alpha)$. From Lang, we know that if R is commutative, then φ_{α} is a ring homomorphism. Show that if R is not commutative, φ_{α} is not necessarily a homomorphism. Hint: Hamilton's quaternions would be a nice ring to work with.
(c) Consider the following popular argument in textbooks for showing a nonzero polynomial of degree n with coefficients in a field has at most n distinct roots in the field.

The proof typically proceeds by induction on n. Suppose that A is a field, and let $f(x) \in A[x]$ have degree $n>1$, and let $\alpha \in A$ with $f(x)=(x-\alpha) g(x)$ for $g \in A[x]$ with degree of g equaling $n-1$. Let β be a root of f and assume that $\alpha \neq \beta$. Then β is a root of g, and so by induction f has at most n distinct roots. While the argument can be made rigorous in the case A is a field, it is rarely done. Given the exact argument as above, let A be a division ring (necessarily with identity). Find a counterexample to the assertion about the number of distinct roots, and explain where there is a gap in the argument in the case of a non-commutative division ring.

