Dartmouth College

Mathematics 101

Homework 3 (due Wednesday, Oct 13)

- 1. Let *H* and *K* be finite subgroups of a group *G*. Show that $|HK| = \frac{|H| |K|}{|H \cap K|}$. Note: do not assume that *HK* is a group. Hint: Consider $(H \cap K) \setminus K$.
- 2. Let G be a group, and H a normal subgroup. Show that G is solvable if and only if H and G/H are solvable.
- 3. Show that the following three statements are equivalent. The second is the Feit-Thompson theorem
 - (a) A finite non-abelian simple group has even order.
 - (b) A simple group of odd order is isomorphic to $\mathbb{Z}/p\mathbb{Z}$ where p is a prime.
 - (c) Every group of odd order is solvable.
- 4. Let G be a group and let G' be the subgroup of G generated by the set $\{xyx^{-1}y^{-1} \mid x, y \in G\}$. G' is called the commutator subgroup of G.
 - (a) Show that if H is a subgroup of G, then $H \supseteq G'$ if and only if $H \triangleleft G$ and G/H is abelian. In particular, $G' \triangleleft G$ and G/G' is abelian.
 - (b) Show that if $\varphi : G \to H$ is a homomorphism of groups, and H is abelian, then φ factors through G/G', that is there is a map $\varphi_* : G/G' \to H$ with $\varphi = \varphi_* \circ \pi$ with $\pi : G \to G/G'$ the standard quotient map.
- 5. Let G be a finite group and H a subgroup whose index in G is the smallest prime dividing the order of G. Show that H is normal in G. Hint: Let G act on G/H by left translation.