
ERRATA AND ADDENDA:

QUATERNION ALGEBRAS

JOHN VOIGHT

This note gives some errata and addenda for the first edition, 2021 printing, of Quaternion al-
gebras [1]. Thanks to Sarah Arpin, Eran Assaf, Angie Babei, Riccardo Bernardini, Enzo Brechler,
Nils Bruin, Donald Cartwright, Louis Carlin, Adam Chapman, Nirvana Coppola, Gunther Cor-
nelissen, Rob de Jeu, Michel Duneau, Sol Friedberg, Joël Ganesh, Darij Grinberg, Michiel Horikx,
Bruce Jordan, Manoj Keshari, Gaurish Korpal, T.-Y. Lam, Chu-Wee Lim, Jun Jie Lin, Haohao
Liu, Jonathan Love, Stefano Marseglia, Kimball Martin, Grant Molnar, Abhijit Mudigonda, Eli
Orvis, Aurel Page, James Rickards, Eric Rodriguez, Freddy Saia, Sina Schaeffler, Francesco Sica,
Harry Smit, Kate Stange, stillconfused, Drew Sutherland, Jacob Swenberg, Justin Walker, Haochen
Wu, and Jiangwei Xue.

Errata

Mathematical glitches and errors.

(1) (2.4.3): the second equality only holds for n = 2, so replace with “where

SU(n) := {A ∈ SLn(C) : A∗ = A−1}

and A∗ = A
t
is the (complex) conjugate transpose of A.”

(2) Proof of Lemma 3.4.2, line 5: “B” should be “K”.
(3) Section 4.1, page 48, line 1, “det f” should be “det f = 1”.
(4) 4.2.13: “nrd(aα) = a2α” should be “nrd(aα) = a2 nrd(α)”.
(5) 4.2.20: should be Q′(x′) and T ′(x′, y′).
(6) 4.2.21: replace with “⟨a1, . . . , an⟩ := ⟨a1⟩⊞ · · ·⊞ ⟨an⟩” (swap sides).
(7) 4.5.8: “Then there is a” should be “Writing V = B0, there is a”; replace trd(B) with

trd(v)”; and in (4.5.9) replace “B0” by “V ”.
(8) Example 4.5.13: “det0” should be “det |B0”.
(9) Example 4.5.14: “det” should be “nrd”.

(10) Proof of Proposition 4.5.17: “xxx−1” should be “xv x−1”.
(11) Beginning of section 5.3: we have only defined quadratic forms when charF ̸= 2. Replace

“we pause our assumption and allow F of arbitrary characteristic” with “the reader may
continue to suppose that charF ̸= 2, but the constructions in this section work quite
generally, so the reader may also wish to return to this section after reading Chapter 6 and
allow charF = 2.”

(12) Proof of Lemma 5.3.14: the one given only works when charF ̸= 2. Add “We give a proof
when charF ̸= 2; for another approach that works more generally, see Exercise 5.20” to the
start of the proof, and remove the parenthetical clause “(Alternatively, this can be viewed
as a graded tensor product; see Exercise 5.21).”

(13) Proof of Lemma 5.4.2: “y ← y − 2x/T (y, y)” should be “y ← y − T (y, y)x/2”. Better to
elaborate on the computation: “Then replacing y ← y − Q(y)x = y − T (y, y)x/2 gives y
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isotropic, since

Q(y −Q(y)x) = Q(y) +Q(Q(y)x) + T (y,−Q(y)x) = Q(y)−Q(y) = 0.”

(14) Proof of Lemma 5.4.7: “γ = αβ−1” should be “γ = −αβ−1”.
(15) 5.6.7: “δ” should be “ζ”.
(16) (5.6.10): “−nrd(v)” should be “Q(v)”.
(17) Proof of Theorem 6.4.7: Q ∼ ⟨1⟩ should be Q ≃ ⟨1⟩.
(18) Proof of Theorem 7.1.2: replace “; in either case, Iα ⊆ I and I is a right ideal as well” with

“We cannot have I ∩ Iα = {0} since then 6 = dim(I + Iα) < 4, impossible. Thus Iα = I
and I is a right ideal as well.”

(19) Proof of Theorem 7.1.5: “β ∈ B ⊗F F
sep ≃ GL2(F

sep)” should be “β ∈ (B ⊗F F
sep)× ≃

GL2(F
sep)”.

(20) Proof of Theorem 7.3.5(b): Replace with “For (b), let W ⊆ V be a submodule of the
semisimple B-module V . Among all injective maps from W into a finite direct sum of
simple B-modules (a nonempty collection from W ⊆ V ), let ϕ : W →

∑
i Vi have the

minimal number of simple factors. We claim that ϕ is an isomorphism. Indeed, for each j,
composing with the projection gives a map ϕj : W →

⊕
i ̸=j Vi with fewer factors, hence by

minimality it is not injective; thus there exists wj ∈ W nonzero such that ϕ(wj) ∈ Vj , and
since Vj is simple we get ϕ(Bwj) = Vj . Putting these together for all j, we conclude that ϕ is
surjective. For the second statement on quotient modules, suppose ϕ : V → Z is a surjective
B-module homomorphism; then ϕ−1(Z) ⊆ V is a B-submodule, and ϕ−1(Z) =

∑
iWi is a

sum of simple B-modules, and hence by Schur’s lemma Z =
∑

i ϕ(Wi) is semisimple.”
(21) Corollary 7.7.11: should assume B is a division algebra. Replace the statement with “Let

B be a central division F -algebra and let K be a maximal subfield. Then dimF B =
(dimF K)2.” And the proof should read “Since B is a division algebra and K is maximal
subfield, in fact K is a maximal commutative F -subalgebra, so CB(K) = K and thus by
Proposition 7.7.8(b) we have dimF B = (dimF K)2.”

(22) 9.2.1: should be f : M → P (missing f).
(23) Proof of Lemma 9.4.6: replace (M : x) by a (since this is not the whole colon ideal), and

replace “Then a is an ideal of R” by “Then a is an ideal of R, nonzero by Lemma 9.3.5(a)”.
(24) Proof of Proposition 9.4.7: replace

⋂
p with

⋂
m.

(25) Paragraph before Theorem 9.4.9: clarify by replacing with the following.

To conclude this section, suppose that R is a Dedekind domain. We characterize in a
simple way the conditions under which a collection (M(p))p of R(p)-lattices arise from a
global R-lattice. Recall that a fractional ideal of R can be factored uniquely into a product
of prime ideals, and hence by the data of these primes and their exponents. So as in
9.4.5, localization furnishes a bijection between fractional R-ideals a ⊆ F and collections of
fractional R(p)-ideals (a(p))p indexed by the primes p satisfying a(p) = R(p) for all but finitely
many primes p; an inverse is (a(p))p 7→

⋂
p a(p). So too can a lattice be understood by a

finite number of localized lattices, once a “reference” lattice has been chosen (to specify the
local behavior of the lattice at other primes).

(26) Proof of Theorem 9.4.9: in the last paragraph, it is a bit more complicated due to the
infinite intersection. Instead, replace the last paragraph of the proof with the following.

By Lemma 9.4.6, the association (N(p))p 7→
⋂

pN(p) is a left inverse to N 7→ (N(p))p.

Conversely, given a collection (N(p))p and letting N ′ =
⋂

pN(p), we claim that N ′
(p) = N(p)

for all p (providing a right inverse). Indeed, the inclusion (⊆) is immediate, so we prove
(⊇). For all but finitely many p we have N ′

(p) = M(p) = N(p), the first as observed above
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and the second by construction. Let p1, . . . , pr be the finitely many remaining primes, and
let x ∈ N(pi). As in the proof of Lemma 9.4.6, consider the nonzero ideal

a := {a ∈ R : ax ∈ N(pj) for all j}.
Then

a(pj) = {a ∈ R(pj) : ax ∈ N(pj)}
for all j and a =

⋂
p a(p) as above. Since x ∈ N(pi), we have a(pi) = R(pi), so there exists

a ∈ a ∖ pi (since a ̸= pia by unique factorization), and therefore ax ∈ N ′ has ax ∈ N ′
(pi)

,

thus x ∈ N ′
(pi)

.

(27) At start of section 10.2: “Throughout, let R be a noetherian domain”.
(28) Below (11.2.8): replace with “s = −ω2 = (1 + i+ j + k)/2, and t = (1 + i− j + k)/2”.
(29) Proof of Proposition 11.3.4: replace “α = µβ + ρ” with “α = βµ+ ρ”.
(30) Remark 11.4.11: FGS should be [FGS2016].
(31) 11.5.7: the vertices given are for the dodecahedron.
(32) Proof of Theorem 14.3.4, below (14.3.5), “let p | b be a prime divisor”: delete.
(33) Proof of Lemma 14.7.5: rewrite the proof with the following.

We suppose that charFv ̸= 2 and leave the other case as an exercise (Exercise 14.23). If
−nv ̸∈ F×2

v , then we can take tv = 0; this treats the case where v is a real place.
So suppose −nv ∈ F×2

v . Let πv be a uniformizer and let ev ∈ R×
v be a nonsquare in k×v

where kv is the residue field. Returning to the Hilbert symbol (section 12.4), since

(−1, ev)v(−1, πv)v(−1, evπv)v = (−1, 1)v = 1

and each of ev, πv, evπv ̸∈ F×2
v , there exists dv ∈ F×

v ∖ F×2
v such that (−1, dv)v = 1. Then

the Hilbert equation −x2v+dvy2v = 1 has a solution xv, yv ∈ Fv; since −4nv ∈ F×2
v , rescaling

(and substituting) gives instead −x2v + dvy
2
v = −4nv. Let tv := xv. Then x

2 − tvx+ nv has
discriminant t2v − 4nv = dvy

2
v ∈ F×

v ∖ F×2
v and so is separable and irreducible.

For the second statement we recall Lemma 13.2.1. In the field Kv := Fv(α), where α is
a root of x2 − tvx+ nv, since nv = nrd(α) ∈ R we conclude α is in the valuation ring S of
K; but then α is integral, so tv ∈ R as well. (One can also prove this statement directly.)

(34) Example 15.5.7: replace “qp = −pq = 1” with “

(
−p
q

)
= −

(
q

p

)
= 1”.

(35) Proposition 15.6.7: all occurrences of a should be replaced by R. The whole point of taking
trace duals is to have trd(αβ) ∈ R for α ∈ I and β ∈ I♯!

(36) §16.1, “and the product of two (say) right O-ideals need not be again a right O-ideal! To
address this, for lattices I, J”: in any ring A, the product of two right A-ideals is again
an A-ideal! (There is a problem with the product of two locally principal right O-ideals
from being again locally principal, but it is too soon to say that. We also have that the
product of a right O-ideal and a left O-ideal need not be left or right O-ideal.) Replace
with “To study ideals of O we must distinguish between left or right ideals and take care
with products. For lattices I, J”.

(37) 16.4.6 through (16.4.10): rewrite as follows.

16.4.6. For a nonzero ideal a of R, we define the absolute norm (or counting norm)
N(a) to be

N(a) := #(R/a) <∞. (16.4.7)

We extend this definition multiplicatively to fractional ideals and to elements a ∈ F× by
defining N(a) := N(aR). Then

N(a) = |NF/Q(a)|.
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16.4.8. Similarly, if I ⊆ B is a locally principal R-lattice, we define the absolute norm
of I to be

N(I) := N([OL(I) : I]R) = N([OR(I) : I]R), (16.4.9)

the latter equality by Proposition 16.4.3. If I is integral then

N(I) = #(OL(I)/I) = #(OR(I)/I).

By Proposition 16.4.3, we have

N(I) = N(NB|F (I));

and if B is simple with dimF B = n2 then

N(I) = N(NB|F (I)) = N(nrd(I))n. (16.4.10)

(38) Example 16.5.12: the last equality in (16.5.14) and the final equality is wrong, since 1/p is

not in any order! Should be Z+
1

p
O0.

(39) Remark 16.5.19: confusion with d versus dK , should read “as abelian groups, we have

f = fZ+
√
dZ = f · S(dK),

so f is principal and hence certainly invertible as an ideal of S(dK)—but not as an ideal of
the smaller order S(d).”

(40) Proof of Proposition 16.4.3: in the first paragraph, better to reference Lemma 9.6.3.
(41) Proof of Main Theorem 16.6.1: for the application to Proposition 16.6.15(a), we need

I3 = I4, which here reads In−1 = In. This is obtained by taking α1 = 1, which can be
justified as follows: We may suppose without loss of generality that α1 = 1: indeed, if p is
the maximal ideal of R and k := R/p its residue field, then I/pI ≃ kn is a k-vector space
with 1 ̸= 0, so we can extend to a basis and this lifts to a basis over R, by Nakayama’s
lemma. In the rest of the proof, replace n by n− 1.

(42) Lemma 17.3.3: for (iii), also require “If further I, J are invertible with OR(I) = OR(J)”.
(43) Proof of Lemma 17.4.6: “O′

p = OR(Jp)” (replace I by J).

(44) Example 17.6.3: the matrix β should be

(
1− b0 0

0 b0

)
.

(45) Lemma 17.7.26: add “I” to the statement and change the proof to read: “For such I ⊆ O,
we have N(I) = [O : I]Z ≤ C, the index taken as abelian groups. But there are only finitely
many subgroups of O of index ≤ C, since O is finitely generated: they correspond to the
possible kernels of surjective group homomorphisms O → A where #A = n ≤ C.”

(46) After (19.1.1): replace sentence with “The set Cl(d) of SL2(Z)-classes of forms in Q(d) is
finite, by reduction theory: when d < 0, every form in Q(d) is equivalent under the action
of SL2(Z) to a unique reduced form, of which there are only finitely many (see section
35.2).”

(47) (19.1.3): replace sentence with: “Conversely, the quadratic form is recovered from the norm

form on K = Q(
√
d) via

Nma : a→ Z
Nma(α) = NmK|Q(α)/a

where a = Nm(a) > 0, with respect to an oriented basis.”
(48) Proposition 19.4.1: add as the first sentence of the proof: “Multiplication is defined by

16.5.3.”
(49) Proof of Theorem 20.3.3, before (20.3.5): “to show that I is left invertible” should be “to

show that I−1I = OR(I)”.
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(50) Before Definition 21.1.1: “modules over a Dedekind quite nice” should be “modules over a
Dedekind domain quite nice”.

(51) 22.2.9: replace “L = Rg” with “L∨ = Rg”, and replace “g−⊗d/2” with “g⊗d/2” (to make
the notation consistent).

(52) 22.3.2: should be “x⊗ x⊗ g − g(Q(x))”—no need to tensor with 1.
(53) Example 22.3.26: In first line should be “R = ZF = Z[

√
10]”, and at the bottom of the

page should be “with discB = (2+
√
10)R, so RamB = {(2,

√
10), (3, 2 +

√
10),∞1,∞2}”.

(54) Proof of Lemma 22.3.52: should be “we may suppose f1 = 0” (not e1 = 0).

(55) (22.1.4), and sentence below: should be “nrd♯(O)”, and the right-hand side should be
multiplied by 1/N .

(56) 23.5.7: should be “L′ ⊊ πL ⊊ L′”.
(57) Proof of Proposition 23.5.8, at the end should be “By adjacency, Li ⊊ πLi−1 ⊆ Li+1.”
(58) Proposition 24.5.14(a): ‘ramified’ and ‘split’ are reversed.
(59) 26.2, “let dF be the discriminant of F”: “let dF be the absolute discriminant of F (i.e., the

absolute value of the discriminant of ZF )”.
(60) (26.2.4), 26.2.14, (26.2.17), (26.2.20), (26.2.21), (26.8.4), (26.8.6), (26.8.13), (29.8.25), proofs

of Lemma 29.8.24 and Corollary 29.10.3: remove absolute value bars so e.g. just “
√
dF ”.

(61) (26.3.13): the final power should be “N(p)2es” (not “N(p)2s”).
(62) 26.5, “(and dF > 0)”: delete.
(63) Theorem 26.5.4: the expression for the mass is missing a factor ζF (2).
(64) After (26.6.6), add “When (O | p) = ∗, we define λ(O, p) = 1.”
(65) Change the text surrounding Lemma 27.1.13 to the following.

We have a natural embedding Q ↪→ Qv for all v ∈ PlQ, and this extends to a
diagonal embedding Q ↪→ Q.

Lemma 27.1.13. The diagonal embedding Q ↪→ Q is an injective ring homomor-
phism and the image is closed and discrete as a subring of Q.

Thus the inclusion map Q ↪→ Q is continuous giving Q the discrete topology (as
would be the case for any map with discrete domain).

(66) Proof of Lemma 27.1.13: Delete first sentence.
(67) In Lemma 27.2.5, change “an injective continuous group homomorphism” to “injective

group homomorphism (which is continuous, giving Q× the discrete topology)”.

(68) Last sentence of §27.4: replace with “Via the projection map F (1) → F×
̸S , although F× ≤ F×

̸S
may no longer be closed, so the quotient F×

̸S /F
× need not be Hausdorff, the quotient is still

quasi-compact (every open cover has a finite subcover).”

(69) Theorem 28.5.5: “nrd(O×)” should be “nrd(Ô×)”.
(70) Corollary 28.6.8: should be “S-indefinite”.
(71) Example 28.9.10: Replace “when (ClG(O)R)

2 is trivial” with “when (ClG(O)R)
2 = ClG(O)R,

i.e., when #ClG(O)R is odd”.
(72) Proof of Proposition 29.6.10: replace proof with:

First consider (a), and suppose F is a finite extension of Qp. We seek to satisfy
(29.4.14); the equation holds up to a constant, τ = cµ for some c ∈ R>0, so we
may choose appropriate f and x and solve for c. We choose f as the characteristic
function of R and x = 0, so that f(0) = 1. Then

f∨(x) =

∫
F
f(y)ψ(xy) dτ(y) = c

∫
F
f(y)ψ(xy) dµ(y)

= c

∫
R
ψ(xy) dµ(y).

(29.6.11)
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By character theory, we get f∨(x) = 0 unless ψ(xy) = 1 for all x ∈ R; equivalently
TrF |Qp

(xy) ∈ Zp for all y ∈ R, i.e., x ∈ R♯ where

R♯ = codiff(R) = {x ∈ F : TrF |Qp
(xR) ∈ Zp}.

On the other hand, if x ∈ R♯, then
∫
R ψ(xy) dµ(y) =

∫
R dµ(y) = µ(R) = 1. Thus

f∨ is c times the characteristic function of R♯. Plugging now into (29.4.14), we
have

1 = f(0) =

∫
F
f∨(y) dτ(y) = c

∫
F
f∨(y) dµ(y) = c2

∫
R♯

dµ(y) = c2µ(R♯)

so c = µ(R♯)−1/2.

Let xi be a Zp-basis for R with x♯i the dual basis, giving a Zp-basis for R♯. By
Lemma 15.6.17 we have

disc(R) = [R♯ : R]Zp

so since µ(R) = 1 by additivity we have

µ(R♯) = |disc(R)|−1.

It follows then that

τ = cµ = µ(R♯)−1/2µ = |disc(R)|1/2µ

is self-dual.
Part (b) is proven in exactly the same way, but now codiff(R) = R.

(73) Example 29.8.5: “let dF ∈ Z>0 be the absolute discriminant of F”, and remove absolute
value bars in displayed equation.

(74) Proposition 30.7.4: the proof of Theorem 30.4.7 does say how to handle the normalizer
group, and in fact it can be quite complicated! This should be deleted, and to keep num-
bering consistent, the first equation in the example that follows should be numbered.

(75) 30.8.1, and proof of Proposition 30.8.5: the containment S ⊆ Kq only holds for the norm
one group. So replace 30.8.1 with:

To a nontrivial cyclic subgroup of O×/R×, we associate the quadratic field K
it generates over F . For example, we may have K ≃ F (ζ2q) for q the order of
the cyclic subgroup; but we may also have γ ∈ O× with γ2 = u ∈ R×, with
K ≃ F (

√
u). Conversely, to a quadratic field K ⊇ F embedded in B, we obtain a

(possibly trivial) cyclic subgroup (K× ∩ O×)/R×.
And replace “Kq” by “K” in the proof of Proposition 30.8.5. (The rest of the argument is
unchanged.)

(76) 31.1.19: the equality between reduced norm and index is not true in general. The statement
(Proposition 31.4.4) holds for a = nrd(J). One can work with the index with the following
additional clause: “Without loss of generality, by weak approximation we may suppose that
O′

p = Op for all p dividing the level M of O and O′.”
(77) Example 31.8.5: “absolute discriminant dF ”.
(78) 33.2.4: Replace “A geodesic is a continuous map (−∞,∞) → X” with “A geodesic is

the image of a continuous map (−∞,∞)→ X such that the restriction to sufficiently small
compact intervals defines a geodesic segment”.

(79) Proof of Lemma 33.4.11: replace with “The proof is direct; it is requested in Exercise 33.5.”
(80) Definition 34.8.4(ii): should be “ϕj = ψij ◦ ϕi”.
(81) In 34.8.6, ”fij” should be “ψij”.
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(82) Lemma 36.2.8: the proof is not ‘identical’, since we would need c ∈ R×. But here is how to

reduce to that case, replacing the proof: “Let

(
a b
c d

)
∈ SL2(C). We claim we may reduce

to the case c = 1. Indeed, if a = 0, multiply on the left by an element of N to get a ̸= 0;
but then (

0 −1
1 0

)(
a b
c d

)(
1 (1− b)/a
0 1

)(
0 −1
1 0

)
=

(
−(1 + c)/a c

1 −a

)
.

Now repeat the first matrix calculation in Lemma 33.4.4, with c = 1.”
(83) 36.5.1: angles sum to π, not 2π.
(84) 36.5.19: the series expansion for L(θ) should have (2θ)2n (not 2n+1 in the exponent), and

this equation should be numbered.
(85) 37.2.5: hyperbolic metric is missing a factor 2.
(86) 37.3.10: the first paragraph should conclude “next vertex vm+1 = v1”.
(87) 39.1.6: replace first sentence with “Let F be number field of degree n = [F : Q] with

absolute discriminant dF and r real places and c complex places, so r + 2c = n.”
(88) Proof of Lemma 40.1.7: first line should be “This is true for z ∈ ◊ (where ◊ is the standard

fundamental domain described in 35.1.3), since then”.
(89) (40.1.15): k should be k − 2, so the equation should read

℘(z) =
1

z2
+

∞∑
k=3

(k − 1)Gk(Λ)z
k−2 =

1

z2
+ 3G4(Λ)z

2 + 5G6(Λ)z
4 + . . . .

(90) Definition 40.4.3, and just before: replace two occurrences of “A” by “[T ]”.
(91) Example 41.1.5: replace “T (p)11” by “T (n)11”.
(92) Example 41.1.11: replace “θij(q)” by “Θij(q)”.
(93) Proof of Proposition 42.1.9: add “, a definite quaternion algebra by Lemma 42.1.5” to first

line.
(94) Proof of Proposition 42.1.9: Before “Since O is a free Z-module”, add “Let ℓ ̸= p be prime.”
(95) Proof of Proposition 42.1.9: replace penultimate paragraph by:

To conclude, we show that Op is the valuation ring (13.3.3) of Bp and is
therefore maximal (Proposition 13.3.4). Since O(p) is dense in Op, it suffices
to show that O(p) = {α ∈ B : v(α) ≥ 0}. For (⊆), if α ∈ O(p) then degα ∈
Z(p) so α is in the valuation ring. For (⊇), let α ∈ B be a rational isogeny
with v(α) ≥ 0, and write α = aϕ where ϕ is an (actual) isogeny not divisible
by any integer. Then v(α) = ordp(a) + v(ϕ) ≥ 0 and 0 ≤ v(ϕ) ≤ 1/2, since
multiplication by p is purely inseparable; so ordp(a) ≥ −1/2 and therefore
a ∈ Z(p), and hence α ∈ O(p).

(Cleaned up a bit, related localization to completion.)
(96) Proof of Lemma 42.2.13: the expression for E[Iβ] holds when nrd(Iβ) is coprime to p;

otherwise, this should be interpreted as a scheme-theoretic kernel.
(97) Proof of Proposition 42.2.16(b), “same right O′-ideal class” should be “same left O′-ideal

class”.
(98) Proof of Lemma 42.2.7: factoring through ϕI is not the definition of I! This statement

follows from Proposition 42.2.16(b), so one could borrow from the future. Or see the
addenda item below.

(99) (42.2.18): “rkE[I ′]” should be “rkEI [I
′]”.

(100) Proof of Theorem 42.3.2, “Tensoring with Q... we may suppose I0 ⊆ B0”: all occurrences
of I0 should be replaced by I.

(101) (42.3.5): “(I ′ : I)” should be “(I : I ′)”.
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(102) Before 42.3.10: delete ε2 and ε3 (their values are already given), so the formula reads

p− 1

12
+

1

4

(
1−

(
−4
p

))
+

1

3

(
1−

(
−3
p

))
.

(103) Example 42.3.11: in second paragraph, should be “OL(I)
× = ⟨1/2− i(1 + j)/4⟩”.

(104) below (43.2.18): Sentence should start “There exists a genus 2 curve over Q”.
(105) 43.5.7: I6 is not holomorphic! So replace with “The functions I4, I10 are holomorphic, but

I2, I6 are meromorphic (poles as in Lemma 43.5.5).”
(106) 43.5.9: In the Albert classification, B is simple, so case (v) should not occur (and in case

(iii), the quaternion algebra is a division algebra), so “five cases” should be “cases”. See
also the addenda below, which describes the split cases as well.

Exercises.

(1) Exercise 2.11: formatting on a) and b) is wrong, should match (a) and (b) in Exercise 2.9.
(2) Exercise 2.16: “βw” should be “tr(λ(βw))”.
(3) Exercise 3.6: “subfields” should be “quadratic subfields (over F )”. (One does not need B

to be a division quaternion algebra for the first statement.)
(4) Exercise 3.14: should be “trd(α)” not “trd(A)”.
(5) Exercise 3.18: replace “V (B) =” with “V (B) :=”, and replace last two sentences “Let B be

a ... over F” with “Let B be a central division ring over F . Show that V (B) is a nonzero
vector space if and only if B is a quaternion algebra over F .”

(6) Exercise 4.5: V should be nondegenerate.
(7) Exercise 4.7: in (a), matrix should be transposed to get a left action; in (b), replace “A[T ]At”

with “At[T ]A”.
(8) Exercise 4.8(a): need i′ ̸= 0.

(9) Exercise 5.7: delete “(−1, 26)Q = 1, i.e.,”, so the exercise is “Show

(
−1, 26
Q

)
≃ M2(Q).”

(10) Exercise 5.10(a): replace “k ∈ {i, j, ij}” with “k ∈ B0”. (Or keep this as is, then you can
take t = 0 in the formulas after.)

(11) Exercise 5.12: replace “ : Clf0Q→ Clf0Q” with “ : Clf Q→ Clf Q”.
(12) Exercise 5.15: move to end of chapter 12.
(13) Exercise 5.22: “R-algebra” should be “F -algebra”.
(14) Exericse 5.23: “an linear” should be “a linear”.
(15) Exercise 6.12: “ζ2 = 1” should be “ζ2 = d”.
(16) Exercise 7.6: “simple F -algebra”.
(17) Exercise 7.8: “(K | b)” should be “(K, b | F )”.
(18) Exercise 7.10: “show” should be “show directly”.
(19) Exercise 7.15(c): The summation should be over g ∈ G, “g−1” should be “(g−1)o”, and

“Give B the structure of a Be-algebra” should be “Give B the structure of a Be-module”.
(20) Exercise 7.16: only one direction is true. So replace with “Let B be an F -algebra, and let

F al be an algebraic closure of F . Show that if B⊗F F
al is simple then B is simple, but give

a counterexample to the converse.”
(21) Exercise 7.20: add “(viz. Main Theorem 4.4.1)” at end.
(22) Exercise 7.23: “Exercise 7.18” should be “Exercise 7.17” and add “central” to the first

sentence.
(23) Exercise 7.24: “let f(T ) ∈ K[T ]” should be “let f(T ) ∈ K[T ] be monic”.
(24) Exercise 9.8: replace p with m.
(25) Exercise 10.8: “R = S[α] a” should be “R = S[α] is a”.
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(26) Between Exercises 11.3 and 11.4: the one starting “Check that the map” should be a
separate exercise; so the numbering of all of the remaining ones should increase by one.

(27) Exercise 11.8 (appears as 11.7): should be “such that ∥x− λ∥2 ≤ 1/2”.
(28) Exercise 11.9 (appears as 11.8): delete “definite”, and replace “O ⊆ B” with “O ⊂ B”.
(29) Exercise 11.10(c) (appears as 11.9(c)): replace exercise with: “More generally, if F is a field

of characteristic 2 show that there is an exact sequence

1→ F 2 → AutF (O ⊗Z F )→ K× ⋊AutF (K)→ 1

where K := F [ω] ≃ F [x]/(x2 + x + 1), and F 2 is considered as an additive group. [Hint:
let J = rad(O ⊗Z F ) be the Jacobson radical of the algebra, and show that the sequence is
induced by an F -linear automorphisms of K := F [ω] and the automorphisms ω 7→ ω + ϵ
with ϵ ∈ J .]”

(30) Exercise 11.13 (appears as 11.12): replace “is conjugate in O(2) to” to “is”.
(31) Exercise 11.16(b) (appears as 11.15(b)): replace “x2 + y2 + z2 = p with x, y, z ∈ Z” with

“t2 + x2 + y2 + z2 = p with t, x, y, z ∈ Z”.
(32) Exercise 25.5: should say w := #O×/{±1} (missing ×).
(33) Exercise 33.7: in the proof of Theorem 33.5.5, refer to Exercise 33.7(d), and replace the

exercise as follows:
“In this exercise, we consider the action of PSL2(R) on points and geodesics in H2.

(a) Show that PSL2(R) acts transitively on the set of geodesics in H2.
(b) Show that PSL2(R) acts transitively on the set of geodesics in H2 of a fixed length.

[Hint: using (a), reduce to the case where all four endpoints lie on the imaginary axis.
Use elements of A in (33.4.1) to map one endpoint each to i; then use an element of
K.]

(c) Show that every orientation-preserving isometry of H2 that maps a geodesic to itself
and fixes two points on this geodesic is the identity.

(d) Conclude that for every isometry ϕ of H2 and every geodesic in H2, there exists g ∈
PSL2(R) such that gϕ fixes the geodesic pointwise.”

(34) Exercise 36.12: add new part (a), “Prove that |B2k| = (−1)k+1B2k for k ≥ 1.

Typos/copyediting.

(1) Section 1.1, line 1: add attribution for “most famous act of mathematical vandalism” to
Gordon–McNulty.

(2) Section 2.1, line 5: replace with “Gn := {gn : g ∈ G} ≤ G for the subgroup of nth powers”.
(3) Section 2.1, line 7: space missing in “B equipped”.
(4) Section 2.1, page 22, line 2: replace “notation. reserve” with “notation. We reserve”.
(5) Section 2.1, page 22, line 4: replace “EndF (B) ∼ Mn(F )” with “EndF (B) ≃ Mn(F )”.
(6) 3.2.9, line 7: delete extraneous “ij”.
(7) Section 4.1, line 10: “element respect to” should be “element with respect to”.
(8) Proof of Main Theorem 4.4.4: end with “The converse follows from Example 4.3.8”.
(9) Proof of Corollary 4.4.5: replace with “The first statement is immediate. The second

follows as in the proof of Main Theorem 4.4.1: we may suppose B is a quaternion algebra
and K = F [i], and we proved that the centralizer of K in B is K, so the centralizer of K×

in B× is K×.”
(10) Before 4.5.8, replace “Since a reflection ... even number of reflections” with “Since reflec-

tions have determinant −1, we have f ∈ SO(Q)(F ) if and only if f is the product of an
even number of reflections.”

(11) Exercise 4.4: a) and b) should be (a) and (b).
(12) Exercise 4.8: “readers some” should be “readers with some”.
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(13) Exercise 4.16(a): in hint, “complement of V ” should be “complement in V ”.
(14) (5.3.3): line after, “two-sided ideal generated the” should be “two-sided ideal generated by

the”.
(15) Definition 4.2.12: delete preceding sentence “From now on... associated to Q”.
(16) Remark 4.2.19: “as least as old” could be “at least as old”.
(17) Exercise 5.2: second “(a)” should be “(b)”.
(18) Section 5.1, line 6, “But always have scalar norms” should be “But we always have scalar

norms”.
(19) Before Lemma 6.3.7, “Next, even though not every quadratic form” should be “Next, not

every quadratic form”.
(20) Section 7.7: Replace “We conclude this chapter with” with “In this section, we establish”.
(21) Corollary 7.7.6: in the line before, replace “isomorphism classes of quaternion algebras”

with “isomorphism classes of quaternion algebras (also proven in Exercise 6.4, in a different
way).”

(22) 7.5.5, 7.7.12: Exercises are numbered wrong, “Exercise 7.12” should be “Exercise 7.11”,
“Exercise 7.11” should be “Exercise 7.10”, and probably others.

(23) Section 7.8: “In this last section, we” should be “We now”, and delete “Thr”.
(24) Proof of Lemma 7.8.5: delete “For part (a)”.
(25) Lemma 7.8.8: “(as in the proof of Lemma 7.8.5” needs right parenthesis.
(26) Exercise 7.20(b): “(viz. Main Theorem mthm:nonsing)” should be “(viz. Main Theorem

4.4.1)”.
(27) Before 8.2.7: “Laghbribi” should be “Laghribi”.
(28) Remark 8.2.9: “[Lam2005, Example VI.1]” should be “[Lam2005, Example VI.1.11]”.
(29) Before Remark 9.4.10: replace “Theorem 9.4.9 M(p) = M ′

(p)” by “Theorem 9.4.9, we have

M(p) =M ′
(p)”.

(30) Proof of Lemma 10.4.3: should be “
⋂

q̸=pO(q)”.

(31) Proof of Lemma 10.4.4: should be “O′
(p) = O(p)”.

(32) Proof of Lemma 11.1.2: Replace “Then trd(α) = 2t ∈ Z, so by Corollary ?? we have t ∈ 1
2Z”

by “Then trd(α) = 2t ∈ Z by Corollary 11.1.3, so t ∈ 1
2Z”.

(33) Below Figure 11.2.7: replace “four inscribed tetrahedra” by “four inscribed regular tetra-
hedra”.

(34) 11.3.1: replace “left (or right)” with “(left or) right”.
(35) Before Proposition 11.3.4: replace “for division on the left” with “on the left”.
(36) Before Corollary 11.3.6: replace “exists a greatest common divisor” with “exists a right

greatest common divisor”.
(37) Proof of Proposition 11.3.4: replace “left Euclidean” with “right Euclidean”.
(38) Corollary 11.3.6: replace “there exists” with “there exist”.
(39) (11.4.9): “f or” should be “for”.
(40) Below (11.4.10): should be “γ1, . . . , γr−1 ∈ O×”.
(41) Before Theorem 13.3.11: add “We recall the notation 6.1.5.”
(42) p. 258, “both of these products are compatible”: delete “are”.
(43) References to Exercise 13.7 (23.2.5, Exercise 23.8, 42.4.6) should be to Exercise 13.8.
(44) Example 14.2.13: “qudaratic” should be “quadratic”, and “not ramified at p” should be

“not ramified at q”.
(45) Example 15.5.7: “qudaratic” should be “quadratic”.
(46) Remark 15.6.18, “instead of the codifferent instead a different”: delete second “instead”,

add a comma.
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(47) Before 16.2.5, replace “B = FJ = F (rJ) ⊆ FIJ” with “B = F (rJ) ⊆ F (IJ) = B”; and in
the line before, replace “r ∈ I” with “r ∈ R ∩ I”.

(48) Proof of Proposition 16.4.4: replace sentence in second paragraph with “Then for all α ∈ I,
we have

[O : I]R[I : Oα]R = [O : Oα]R = NmB|F (α)R,

the first equality holding by Lemma 9.6.4 (the index is given by the determinant of a change
of basis)”.

(49) p. 266, line -2, “Finally, not every lattice”: delete “Finally”.
(50) p. 280, line -2, “Lemma 17.3.3(b)”: should be “Lemma 17.3.3(ii)”.
(51) Proof of Corollary 17.2.3: “Rp is a complete DVR”.
(52) 17.3.7: specify that B = Mn(F ).
(53) 17.4.15, “is given”: should be “are given”.
(54) Main Theorem 17.7.1: last sentence should end “are finite”.
(55) p. 312, middle paragraph: missing parenthesis at end.
(56) Before Remark 19.5.8: “Brant” should be “Brandt”.
(57) Before Theorem 20.1.1: delete extra space before “projective”.
(58) End of Example 20.1.2: “invertible as lattice” should be “invertible as a lattice”.
(59) Proof of Theorem 20.3.3: The two occurrences of “αi” indicating a set should be “{αi}i”.
(60) Remark 20.3.6, line 2: delete extra space before “dual basis lemma”.
(61) 22.3.1 “nondegenerateternary” should be “nondegenerate ternary”.
(62) Example 22.3.26: in line 6, should be O = Clf0(Q) = R⊕ p−1i⊕ p−1j ⊕ p−1k (so all ⊕).
(63) 23.2.2: “have the nice local description” should be “have the following nice local descrip-

tion”.
(64) Before (24.1.2), “proper implications”: just “implications”.
(65) Before (24.1.3), “O♮ = OL(radO)”: should be :=.
(66) 24.2.19, “qudratic” should be “quadratic”.
(67) 24.3.1: “posibilities” should be “possibilities”.
(68) Definition 24.3.2: space missing before “residually” in two places, and the “we say” line is

not formatted in line with the rest.
(69) Proof of Proposition 24.5.14: Delete duplicate reference to 24.5.12.
(70) Before (25.3.14): Replace “Proposition 25.3.13” with “(25.3.7)”.
(71) Before Lemma 26.4.1: Replace “every nonzero ideal is invertible” with “every nonzero Op-

ideal is invertible (Proposition 16.6.15(b))”.
(72) Proof of Lemma 26.6.7: space missing in “that if(O′”.
(73) (27.6.13) and below: should be colonequals, and “B1 := {α ∈ B : nrd(α) = 1}.”
(74) Before Theorem 28.2.11: replace “()” with “(Lemma 17.7.13)”.
(75) Proof of Corollary 28.3.6: in the appeal to Lemma 28.7.2, add “borrowing (in a self-

contained way) from the future”.
(76) Above Corollary 28.5.10: replace “ClG(O)” with “ClG(O)R”.
(77) Proof of Proposition 28.7.3: the reference to Exercise 7.31 should be Exercise 7.30.
(78) 29.6.7(b)–(c), proof of Proposition 29.6.10, 29.8.9: replace F/ with F | in subscripts.
(79) Definition 29.6.8: write “ψ = ψF ” (we immediately abbreviate).
(80) (30.8.4) and in the proof of Proposition 30.8.5: replace “Emb(S;O)” with “Emb(S,O)”.
(81) Lemma 34.4.5: “primages” should be “preimages”.
(82) Proof of Proposition 36.6.2, “and y′ = y/∥z∥2 > y, and we repeat”: replace with “and

y′ = y/∥z∥2 > y, and so ∥γz∥2 ≥ 1”.

(83) 37.2.9: in the subscript of
⋂

, replace Γ− with Γ∖.

(84) Before Definition 39.4.10, bottom of page 738: delete extraneous □ in [ClΩR : ClR].
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(85) After (41.5.6): delete indent in front of “where δ = 1, 0”.
(86) Proof of Lemma 42.1.11: should be “[Sil2009, Exercise V.5.4(b)]” (instead of “[Sil2009,

Exercise III.5.4(b)]”).
(87) After (42.2.2): “E[α] = kerα” should be “E[α] := kerα”.
(88) Proof of Lemma 42.2.22: at the end of the proof, “..” should be “.”.
(89) (42.2.27): “Hom(EI′EI)” should be “Hom(EI′ , EI)”.
(90) Symbol Definition List: “Eichler symbol of a local” should conclude with “order”.
(91) Bibliography: the items [Hur1896] and [Hur1898] should be interchanged.

Addenda

(1) Remark 8.2.9: Albert’s book [Alb39] on algebras still reads well today. The proof of the
key implication (iii) ⇒ (i) in Proposition 8.2.3 is due to him [Alb72]. (“I discovered this
theorem some time ago. There appears to be some continuing interest in it, and I am
therefore publishing it now.”) Albert [Alb32] used Proposition 8.2.8 to show that over
F = R(x, y), the tensor product of

B1 =

(
x,−1
F

)
and B2 =

(
−x, y
F

)
is a division algebra, by verifying that the Albert form Q(B1, B2) is anisotropic over F . See
Lam [Lam2005, Albert’s Theorem 4.8, Example VI.1.11] for more details.

For the fields of interest in this book (local fields and global fields), a biquaternion
algebra will never be a division algebra—the proof of this fact rests on classification results
for quaternion algebras over these fields, which we will take up in earnest in Part II.

(2) Proof of Lemma 11.4.1: replace second sentence with: “Then O/pO ≃ (−1,−1 | Fp) ≃
M2(Fp) by Wedderburn’s little theorem. There exists a right ideal I mod p ⊂ O/pO with

dimFp(I mod p) = 2, for example I mod p =

(
∗ ∗
0 0

)
.”

(3) Definition 24.3.2: add “We say that O has Eichler invariant given by the Eichler symbol(
O
p

)
”.

(4) Example 28.5.20: Let F be a number field and let B be an indefinite quaternion algebra
over F (so either F has a complex place or at least one real place of F is unramified in B).
Suppose that R = ZF has narrow class number 1, and let O ⊆ B be an Eichler R-order in
B. Then #ClsO = 1. Indeed, we apply Theorem 28.5.5: by Example 28.5.16, the order
O is locally norm-maximal so ClG(O)R is a quotient of the narrow class group, which is
trivial.

(5) Remark 33.2.8: at the end of the first paragraph, add “For an approach geared towards the
context of hyperbolic geometry, see Ratcliffe [R.”

(6) Before Definition 34.4.7: should refer to Lemma 34.4.1(iii) (not (iv)).
(7) Remark 37.2.11: clarify first sentence “In the identification H2 → D2, the preimage of an

isometric circle in D2 is the corresponding perpendicular bisector, since this identification
preserves hyperbolic distance.”

(8) 37.3.3: replace first paragraph with: “We recall Definition 33.6.5 (sides and vertices) for
hyperbolic polygons. For a Dirichlet domain ◊, a side is a geodesic segment of positive
length of the form ◊ ∩ γ◊ with γ ∈ Γ ∖ {1}; and a vertex is the point of intersection
between two sides, equivalently, a vertex is a single point of the form ◊ ∩ γ◊ ∩ γ′◊ with
γ, γ′ ∈ Γ.”

(9) Lemma 42.2.7 can be proven by appeal to the Isogeny Theorem, as follows.
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The image of Hom(EI , E) under precomposition by ϕI lands in End(E) = O. We check
locally that the image is I. First, we may replace I by an ideal in the same left O-ideal
class to suppose that nrd(I) is coprime to p. Then Ip = Op. For the remaining primes, let
ℓ ̸= p be prime. As in the proof of Lemma 42.1.11, the Isogeny Theorem gives

Hom(EI , E)⊗ Zℓ
∼−→ Hom(Tℓ(EI), Tℓ(E))

(recalling that over a sufficiently large finite subfield of F , the Galois action is scalar). Since
I is locally principal, we have Iℓ = Oℓαℓ for some αℓ ∈ Oℓ ≃ M2(Zℓ) with Tℓ(E) = Z2

ℓ .

Then Tℓ(EI) = α−1
ℓ Tℓ(E) and so

Hom(Tℓ(EI), Tℓ(E)) = Oℓαℓ.

The pullback map
Hom(Tℓ(EI), Tℓ(E))→ Oℓ

is just the identity map, since we are already writing isogenies with respect to the fixed
(standard) basis of Tℓ(E); so its image is Oℓαℓ = Iℓ. Therefore the image lies in I by the
local–global dictionary for lattices.

(10) Delete sentence after Lemma 42.1.11, and add the following as Corollary 42.2.28 at the end
of section 42.2.

Corollary 42.2.28. For all E′ supersingular, there exists a separable isogeny ϕ : E → E′.

Proof. By Corollary 42.2.21, we have E′ ≃ EI for a left O-ideal I, which by Lemma 42.2.7
is well-defined on the left ideal class of I. The result follows then by Exercise 17.5: we may
choose a representative I ′ ∼ I with nrd(I ′) coprime to p, so there is β ∈ I ′ with nrd(β)
coprime to p, yielding the desired separable isogeny.

In fact, more is true: by Proposition 28.5.18 (spelled out in Example 28.5.19), we may
choose the separable isogeny to have degree supported in any nonempty set of primes not
containing p. □

(11) Exercise 42.5: In the proof of Proposition 42.2.16, we considered II ′ = Oα and the isogeny
ϕI′ : EI → EI/EI [I

′], which moves away from the setup with the fixed supersingular elliptic
curve E. We may proceed differently as follows.
(a) Let m := nrd(I). From II = Om show that ϕI = ϕ∨I (dual isogeny). Conclude that

deg ϕI = deg ϕI .
(b) Prove deg ϕI′ | nrd(I ′) by working with ϕI′ : E → EI′ .

(12) 43.5.9: Replace with the following.
Let A be a principally polarized complex abelian surface. Let End(A) be the ring of

endomorphisms of A, and let B = End(A)⊗ZQ. If A ∼ E1×E2 is isogenous to the product
of two elliptic curves, then either E1 ̸∼ E2 are not isogenous and B ≃ End(E1)× End(E2)
or E1 ∼ E2 ∼ E and B ≃ End(E2) ≃ M2(End(E)). As the endomorphism algebra of
an elliptic curve is either Q or an imaginary quadratic field K, this gives four possibilities:
B ≃ Q×Q,Q×K,M2(Q),M2(K). Otherwise, B is simple, and by the classification theorem
of Albert (Theorem 8.5.4), the Q-algebra B is exactly one of the following:
(a) B = Q, and we say A is typical;
(b) B = F a real quadratic field, and we say A has real multiplication (RM) by F ;
(c) B is an indefinite division quaternion algebra over Q, and we say A has quaternionic

multiplication (QM) by B; or
(d) B = K is a quartic CM field K, and we say A has complex multiplication (CM)

by K.
One may also view the products B ≃ Q × Q and B ≃ M2(Q) as special cases of (ii) and
(iii), respectively.
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