## QUATERNION ORDERS OF CLASS NUMBER ONE (HW \#7)

MATH 727

In this lab, we determine all definite quaternion orders of class number 1 over $\mathbb{Q}$.
(1) First, let $\mathcal{O}$ be a maximal order in a definite quaternion algebra $B$ over $\mathbb{Q}$. Use the Eichler mass formula to get a bound on the discriminant $D$ of $B$.
(2) Use Magma to find all maximal orders of class number 1. For example:

```
> B := QuaternionAlgebra(3*5*7);
> Discriminant(B);
> IsDefinite(B);
> O := MaximalOrder(B);
> Basis(0);
> H := RightIdealClasses(0);
> #H;
> H;
```

(3) Now let $\Lambda$ be any order in a definite quaternion order and suppose $\Lambda \subset \mathcal{O}$. Show that $\# \mathrm{Cl} \Lambda \geq \# \mathrm{Cl} \mathcal{O}$. [Hint: If it helps, think adelically!]
(4) Let $\mathcal{O}$ be an Eichler order, an order such that $\mathcal{O}_{p}$ is principal for all ramified primes $p$ and such that

$$
\mathcal{O}_{p} \cong\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}\left(\mathbb{Z}_{p}\right): p^{f} \mid c\right\} \subset M_{2}\left(\mathbb{Z}_{p}\right)
$$

(with $f \in \mathbb{Z}_{\geq 0}$, equal to 0 for almost all $p$ ) if $p$ is split. We let $N=\prod_{p} p^{f}$ be the level of $\mathcal{O}$.

Making the obvious generalization to orders over a number field $F$, a variant of the Eichler mass formula for definite Eichler orders $\mathcal{O}$ of level $\mathfrak{N}$ reads:

$$
\sum_{[J] \in \mathcal{O}} \frac{1}{w(J)}=2^{1-n}\left|\zeta_{F}(-1)\right| h_{F} \Phi(\mathfrak{D}) \Psi(\mathfrak{N})
$$

where $\Psi(\mathfrak{N})=N(\mathfrak{N}) \prod_{\mathfrak{p} \mid \mathfrak{N}}(1+1 / N \mathfrak{p})$.
Use this formula to find all definite Eichler orders with class number one. [Hint: The answer is 12. At least I wrote a paper saying so. Vignéras says 10 , but I think she only computes squarefree level (p.153). Brzezinski quotes Vignéras as saying 10, but then I think he writes down the other 2 orders and just does not recognize that they are Eichler...]

For example:
> // Eichler order of level 9 in algebra of discriminant 2
> 0 := QuaternionOrder (2,9);
> \#RightIdealClasses(0);
(5) Now the hard final step: use the previous exercise to find all quaternion orders with class number one.

For example:
> $\mathrm{B}<\mathrm{i}, \mathrm{j}, \mathrm{k}>$ := QuaternionAlgebra<Rationals() | -1, -1>;
> 0 := QuaternionOrder([1,i,j,i*j]); // Not Eichler
> \#RightIdealClasses(0);
Recall this is the order with reduced norm given by the sum of four squares!
(6) Let $\Lambda$ be an order and suppose $\Lambda \subset \mathcal{O}$ where $\mathcal{O}$ is maximal and $h(\mathcal{O})=\# \mathrm{Cl}(\mathcal{O})=1$. Then there exists $e \in \mathbb{Z}_{>0}$ such that $e \Lambda \subset \mathcal{O}$. Show that each class in $\mathrm{Cl} \Lambda$ has a representative $I$ such that $e \mathcal{O} \subset I \subset \mathcal{O}$. [Hint: For any such $I$, consider $I \mathcal{O}=x \mathcal{O}$; conclude that $e \mathcal{O} \subset x^{-1} I \subset \mathcal{O}$.]
(7) What does the previous exercise tell you about the zeta function of a general order ( over $\mathbb{Q}$ )? Do you conjecture a version of Eichler's mass formula for them?

