
ADDENDA:

COMPUTING EUCLIDEAN BELYI MAPS

MATTHEW RADOSEVICH AND JOHN VOIGHT

This note gives an addenda for the article Computing Euclidean Belyi maps [1].

1. Addenda

The addenda is summarized in the following additional remark.

Remark 3.2.10. If in Algorithm 2.4.4 we compute instead the Smith normal form

(SNF) of A as

(
n 0
0 m

)
= PAQ (with n | m), the result gives a basis for ΛΓ relative

to a basis for Λ∆ such that ΛΓ = 〈nω′1,mω′2〉 with Λ∆ = 〈ω′1, ω′2〉. Accordingly,
we adjust Step 4 in Algorithm 3.2.5 by replacing the occurrences of ω1 and ω2

respectively with ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2 where Q−1 =

(
a b
c d

)
.

Incorporating Remark 3.2.9, we may further simplify by factoring n from each
entry in our basis matrix (corresponding to factoring the multiplication by n map

from ψ̂). This reduces us to the case n = 1 in Algorithm 3.2.5.

In more detail, computing the map ψ : E(Γ) → E(∆) is the most complicated
and costly step in Algorithm 3.5.1. To do so, we must first determine a basis for
the lattice ΛΓ relative to a basis for the lattice Λ∆. In Corollary 2.2.7, we make
a “standard” choice for the basis vectors ω1 and ω2 for Λ∆ that coincide with the
periods Magma assigns to our canonical curves E7 and E�. Algorithm 2.4.4 then
produces a two column matrix A whose rows, taken as coordinates relative to the
basis vectors ω1 and ω2, give a set of vectors that span ΛΓ.

Reducing A to Hermite normal form and taking its first two rows gives a basis
matrix

BH :=

(
n1 n2

0 m2

)
such that ΛΓ = 〈n1ω1 + n2ω2,m2ω2〉.

If, instead, we reduce A to Smith normal form and take its first two rows, we
obtain a matrix of the form

BS :=

(
n 0
0 m

)
where n divides m. Like with BH , the matrix BS describes a basis for ΛΓ relative
to a basis for Λ∆ such that ΛΓ = 〈nω′1,mω′2〉 with Λ∆ = 〈ω′1, ω′2〉. We note that
the basis vectors ω′1 and ω′2 need not be the same as ω1 and ω2.

Because Magma’s implementation of the Weierstrass ℘-function takes inputs rel-
ative to ω1 and ω2, it is then necessary to relate ω′1 and ω′2 back to the “standard”
basis vectors. Let P,Q ∈ GL2(Z) be such that BS = PBHQ. Then the matri-
ces P and Q correspond, respectively, to elementary row and column operations
performed on BH that transform it to BS . As each elementary column operation
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corresponds to an invertible change to the choice of basis for Λ∆, we can recover
the relationship between each ω′i and ωi from the matrix Q indicated above. Specif-
ically, if

Q−1 =

(
a b
c d

)
then ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2.

Working with BS rather than BH simplifies our computation of the isogeny
ψ : E(Γ) → E(∆). Algorithm 3.2.5 describes a procedure for computing ψ (by first

computing its dual, ψ̂) that assumes the Hermite basis matrix BH . If we instead
work with the Smith matrix BS , we may assume that n2 = 0 and let n1 = n
and m2 = m. Incorporating remark 3.2.9 and recalling that n divides m, we may
further simplify by factoring n from each entry in our basis matrix (corresponding

to factoring the multiplication by n map from ψ̂), leaving us with the matrix

1

n
BS =

(
1 0
0 m/n

)
where m/n ∈ Z.

The combined effect of Remark 3.2.9 and this Smith simplification allows us to
always assume in Algorithm 3.2.5 a basis matrix B of particularly simple form:

B :=

(
1 0
0 d

)
This basis matrix gives coordinates relative to ω′1 and ω′2 rather than ω1 and ω2.
Accordingly, we adjust the implementation of step 4 in Algorithm 3.2.5 by replacing
the occurrences of ω1 and ω2 respectively with ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2

as obtained above.
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