ADDENDA:
COMPUTING EUCLIDEAN BELYI MAPS

MATTHEW RADOSEVICH AND JOHN VOIGHT

This note gives an addenda for the article Computing Euclidean Belyi maps [1].

1. ADDENDA

The addenda is summarized in the following additional remark.
Remark 3.2.10. If in Algorithm 2.4.4 we compute instead the Smith normal form
(SNF) of A as (g 7?@) = PAQ (withn | m), the result gives a basis for Ar relative
to a basis for Aa such that Ar = (nwi, mwh) with Ax = (w],wh). Accordingly,
we adjust Step 4 in Algorithm 3.2.5 by replacing the occurrences of wi and ws
a b
c d

Incorporating Remark 3.2.9, we may further simplify by factoring n from each
entry in our basis matriz (corresponding to factoring the multiplication by n map
from v). This reduces us to the case n =1 in Algorithm 3.2.5.

respectively with w] = aw; + bwy and wh = cwy + dwy where Q'=

In more detail, computing the map ¢: E(I') — E(A) is the most complicated
and costly step in Algorithm 3.5.1. To do so, we must first determine a basis for
the lattice Ar relative to a basis for the lattice Aa. In Corollary 2.2.7, we make
a “standard” choice for the basis vectors w; and wy for Ax that coincide with the
periods Magma assigns to our canonical curves Fo and Eg. Algorithm 2.4.4 then
produces a two column matrix A whose rows, taken as coordinates relative to the
basis vectors wy and ws, give a set of vectors that span Ar.

Reducing A to Hermite normal form and taking its first two rows gives a basis

matrix
. [(n1 N2
Bu = <0 m2>

such that Ar = (nqjw; + nows, mows).
If, instead, we reduce A to Smith normal form and take its first two rows, we
obtain a matrix of the form
n 0
ne= (2 9)

where n divides m. Like with By, the matrix Bgs describes a basis for Ar relative
to a basis for Aa such that Ar = (nwi, mw}) with Ax = (w],ws). We note that
the basis vectors w] and w) need not be the same as w; and ws.

Because Magma’s implementation of the Weierstrass p-function takes inputs rel-
ative to wy and ws, it is then necessary to relate wj and w) back to the “standard”
basis vectors. Let P,@Q € GLg(Z) be such that Bs = PBg(Q. Then the matri-
ces P and @) correspond, respectively, to elementary row and column operations
performed on By that transform it to Bg. As each elementary column operation
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corresponds to an invertible change to the choice of basis for Aax, we can recover
the relationship between each w] and w; from the matrix @ indicated above. Specif-

ically, if
-1 _ a b
)

then w| = aw; + bws and wj = cwy + dws.

Working with Bg rather than By simplifies our computation of the isogeny
¥ : E(T') — E(A). Algorithm 3.2.5 describes a procedure for computing ¢ (by first
computing its dual, 12) that assumes the Hermite basis matrix By. If we instead
work with the Smith matrix Bg, we may assume that no = 0 and let n; = n
and my = m. Incorporating remark 3.2.9 and recalling that n divides m, we may
further simplify by factoring n from each entry in our basis matrix (corresponding

-~

to factoring the multiplication by n map from ), leaving us with the matrix

1 1 0
ﬁBS N <O m/n>
where m/n € Z.

The combined effect of Remark 3.2.9 and this Smith simplification allows us to
always assume in Algorithm 3.2.5 a basis matrix B of particularly simple form:

o=(3 )

This basis matrix gives coordinates relative to wi] and wj rather than wy and ws.
Accordingly, we adjust the implementation of step 4 in Algorithm 3.2.5 by replacing
the occurrences of wy and wy respectively with w] = aw; + bws and w) = cwy + dws
as obtained above.
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