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Abstract. We construct infinitely many abelian surfaces A defined over the rational
numbers such that, for ℓ ⩽ 7 prime, the ℓ-torsion subgroup of A is not isomorphic as a
Galois module to the ℓ-torsion subgroup of the dual A∨. We do this by analyzing the action
of the Galois group on the ℓ-adic Tate module and its reduction modulo ℓ.
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1. Introduction

1.1. Setup. Let A be an abelian variety over a number field K with g = dimA. Many
important arithmetic features of A are reflected in its torsion subgroups A[n], equipped
with the action of the absolute Galois group GalK := Gal(Kal |K) as encoded in the Galois
representation

(1.1.1) ρA,n : GalK → AutZ/nZ(A[n]) ≃ GL2g(Z/nZ).

Let A∨ be the abelian variety dual to A. Then the torsion subgroup A[n] is Cartier-dual
to A∨[n] via the (tautological) Weil pairing:

(1.1.2) A[n]× A∨[n]→ µn.

Concretely, from (1.1.2) we obtain an isomorphism

(1.1.3) ρA∨,n ≃ ρ∗A,n ⊗ εn,

where ∗ denotes the contragredient representation (transpose inverse) and εn is the mod n
cyclotomic character.

If A has a polarization λ : A → A∨ over K whose degree is coprime to n—for instance,
if A has a principal polarization over K, which holds if A is an elliptic curve—then the
polarization induces an isomorphism A[n] ≃ A∨[n] of Galois modules. Moreover, for n = ℓ
prime, the semi-simplifications of ρA,ℓ and ρA∨,ℓ are always isomorphic (Lemma 4.3.1).
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1.2. Results. Our main result shows that in general we need not have A[n] isomorphic to
A∨[n].

Theorem 1.2.1. Let ℓ ⩽ 7 be prime. Then there exist infinitely many pairwise geometrically
non-isogenous abelian surfaces A over Q such that A[ℓ] ̸≃ A∨[ℓ] as group schemes over Q.

Equivalently, for the surfaces in Theorem 1.2.1, we have ρA,ℓ ̸≃ ρA∨,ℓ as linear represen-
tations, which by (1.1.3) says that the representation ρA,ℓ is not self-dual up to twist by its
similitude character (the cyclotomic character).

We construct the abelian surfaces in Theorem 1.2.1 by gluing two elliptic curves E,E ′ along
a Galois-stable, diagonal subgroup isomorphic to Z/ℓZ as an abelian group. In particular,
the resulting abelian surfaces are not simple over Q, and they have a (1, ℓ)-polarization
but not a principal polarization over Q. In fact, infinitely many of these surfaces do not
have a principal polarization over Qal. We then finish by a direct calculation of the Galois
representations. (To provide a more general context for these calculations, and streamline
ours, we set up in section 2 a categorical framework.)

We also go a bit further: forgetting the group structure, the linear representation ρA,n
yields a permutation representation πA,n : GalK → Sym(A[n]) ≃ Sn2g . If ρA,n ≃ ρA∨,n then
of course πA,n ≃ πA∨,n, but not conversely. In fact, abelian surfaces among those exhibited
in Theorem 1.2.1 satisfy this stronger property for ℓ = 3.

Corollary 1.2.2. There exist infinitely many geometrically nonisogenous abelian surfaces
A over Q such that πA,3 ̸≃ πA∨,3 as permutation representations. Moreover, the linear
representations over any field k with char k = 0 induced by the permutation representations
are not isomorphic.

1.3. Discussion and applications. The underlying parameter space for our construction
is a twist of the product Y0(ℓ) × Y1(ℓ) of modular curves; for ℓ ⩽ 7, this space is birational
to A2. We may therefore modify the setup or ask for additional properties to be satisfied in
Theorem 1.2.1. Our results can be extended over any number field K with K ∩Q(ζℓ) = Q.

One impetus for exhibiting these abelian varieties came from studying the cohomology
and derived categories of symplectic varieties of Kummer type. The linear representation
induced by the permutation representation associated to the 3-torsion of an abelian surface
A over K is contained in the ℓ-adic étale cohomology of the generalized Kummer fourfold
K2(A) [FH23, Theorem 1.1] (see also Hassett–Tschinkel [HT13, Proposition 4.1]). As a result
[FH23, Corollary 1.2], the fourfolds K2(A) and K2(A

∨) are not derived equivalent over K
if the induced linear representations associated to A[3] and A∨[3] are not isomorphic. In
particular, Corollary 1.2.2 implies that there are infinitely many abelian surfaces A defined
over Q where K2(A) and K2(A

∨) are not derived equivalent over Q; it would be interesting
to determine if they become derived equivalent over K(A[3], A∨[3]).
Quite generally (see Proposition 4.3.2 for a start), we can classify those subgroups G ⩽

GL2g(Z/nZ) preserving a degenerate (but nonzero) alternating pairing up to scaling with the
property that G is not isomorphic to its contragredient twisted by the similitude character.
Attached to each G would be an associated moduli space of polarized abelian varieties of
dimension g, and the rational points of this moduli space which do not lift to the moduli
space attached to any proper subgroup G′ < G would similarly give candidate examples.
Exhibiting such abelian varieties systematically or explicitly presents an attractive challenge.

2



1.4. Contents. Before proceeding with our construction, in section 2 we explain (in a
categorical context) how Tate modules change under isogenies and duals. In section 3
we exhibit our family and describe its basic properties, and we complete the proof of
Theorem 1.2.1 and Corollary 1.2.2 in section 4 and then conclude with some final remarks.

Acknowledgements. The authors would like to thank Asher Auel, Nils Bruin, Johan de
Jong, Pablo Magni, Bjorn Poonen, Ari Shnidman, and Alexei Skorobogatov for helpful
comments. Honigs was supported by an NSERC Discovery grant. Voight was supported by
a Simons Collaboration grant (550029).

2. Approach to Galois action computations

Our results depend on analyzing the Galois action on torsion subgroups of certain abelian
surfaces that are isogenous quotients of products of elliptic curves. We are able to characterize
the Galois action on the elliptic curves, which is comparatively well-understood, and then
use matrix algebra to compute how the action changes under isogeny.

In this section we give a discussion of our computational methods, including practical
considerations and examples as well as a formal categorical framework for our approach.
The reader may wish to skip ahead to the next section and flip back to this section as
needed.

In 2.1, we will begin by discussing the relationship between Tate modules of isogenous
abelian varieties. We then give a general approach to choosing matrices to relate the Galois
actions on the Tate modules of isogenous abelian varieties in 2.2. In 2.3 we discuss how
matrices giving these actions can be selected in some practical situations. Finally in 2.4, we
focus on the case where some of the isogenies in question are polarizations.

In this section, we work over a field k of characteristic p (where p may be 0) and set the
convention that A0 over k is an abelian variety of dimension g.

2.1. From isogenies to Tate modules. A complex abelian variety of dimension g is
isomorphic to a g-dimensional complex vector space modulo a lattice of rank 2g, i.e. Cg/Λ.
An isogeny of complex abelian varieties Cg/Λ1 → Cg/Λ2 is given by an inclusion of lattices
Λ2 ⊆ Λ1. Working over an arbitrary field k, Tate modules allow us to consider separable
isogenies in an analogous way: for any ℓ ̸= p, an isogeny A0 → A gives an inclusion of Tate
modules TℓA0 ↪→ TℓA. Given the Galois action on TℓA0, we may determine the action on
TℓA by identifying it with a sublattice of VℓA0 := TℓA0 ⊗Qℓ. This approach also facilitates
comparing the Galois actions on more than one quotient of A0.

In this section, we introduce a functor that assigns isogenous quotients of A0 to sublattices
of VℓA0. We begin by introducing notation to simultaneously keep track of all Tate modules
where ℓ ̸= p.

Definition 2.1.1. Let Ẑ(p) :=
∏

ℓ ̸=pZℓ the prime-to-p profinite completion of Z. Let A
over k be a g-dimensional abelian variety. The (prime-to-p) adelic Tate module is the free

Ẑ(p)-module of rank 2g:

(2.1.2) TA := lim←−
char k∤m

A[m](ksep) ≃
∏

ℓ̸=char k

TℓA.

Let VA := TA⊗Z Q.
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Remark 2.1.3. We could extend the results in this section to include the factor at p by using
the Dieudonné module. (Our application is in characteristic 0.)

Definition 2.1.4. Let I be the category whose objects are abelian varieties over k and
whose morphisms are k-isogenies with degree prime to p. Then the objects of the coslice
category IA0 := A0 ↓I are isogenies A0 → A and its morphisms are commuting triangles of
isogenies:

(2.1.5)

A0

(ψ)

��

(φ)

��
A

f
// B.

Since both the objects and morphisms of IA0 are isogenies, we use parentheses to distinguish
objects.

Remark 2.1.6. The identity morphism (idA0) is initial in IA0 . For any (φ) ∈ Ob IA0 , φ is
the unique morphism that maps (idA0)→ (φ).

Next we give the category of sublattices of VA0.

Definition 2.1.7. Let TA0 be the category whose objects are Ẑ(p)-lattices of rank 2g con-
tained in VA0 and whose morphisms are injective maps of lattices in VA0:

(2.1.8)

T 
 m

��

� � // T ′
q Q

��
VA0

.

We now define a functor Ψ: IA0 → TA0 .

Definition 2.1.9. For any (φ) : A0 → A ∈ Ob IA0 , we have the injective Ẑ(p)-linear map

Tφ : TA0 ↪→ TA and the isomorphism Vφ : VA0
∼−→ VA. We define Ψ(φ) := (Vφ)−1(TA),

which is the image of TA in VA0 under the dotted arrow in the following commutative
diagram:

(2.1.10)

TA0
� � Tφ //
� _

⊗Q

��

TA� _

⊗Q

��

Oo

��
VA0

∼
Vφ
// VA.

For any morphism f in IA0 as in (2.1.5), we have the following commutative diagram.

(2.1.11)

TA0
� � Tφ //
� _

⊗Q

��

TA � �
Tf //

� _

⊗Q

��

Oo

��

TB� _

⊗Q

��

J j

ww
VA0

∼
Vφ

// VA ∼
Vf

// VB
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We define Ψf : Ψ(φ)→ Ψ(ψ) to be the map between sublattices of VA0 given by the image
of Tf in VA0 under the dotted arrows.

The functoriality of Ψ is a consequence of the functoriality of T and V acting on I.
Remark 2.1.12. Since T is a faithful functor, so is Ψ. However, Ψ is not full in general;
lattice morphisms that are not invariant under Galk cannot be in its image. If we restrict
morphisms in TA0 to Galois equivariant ones, then fullness of Ψ is equivalent to the Tate
conjecture. Understanding the essential image of Ψ is equivalent to characterizing which
sublattices of VA0 originate from an isogeny. The interested reader may wish to compare
our setting with [Lan13, §1.3.5.2], where the author gives an equivalence of categories relating
isogenies A0 → A to subgroups of VA0, working over an algebraically closed field.

2.2. From Tate modules to group representations. In our computations in section 3,
we will consider questions such as the following: Given a diagram of isogenies such as (2.1.11)
and a choice of matrices giving the Galois representation on TA0, how should we choose
matrices to compute the Galois representations on TA and TB and relate those via f?
In section 2.1, we showed how we may consider TA and TB as sublattices of VA0. All the

maps involved in that identification are Galois invariant, so the Galois action on TA and TB
is simply the restriction of the action on VA0 to these sublattices. Our question is now a
matter of choosing compatible change of basis matrices. We will first show this is equivalent
to choosing a certain functor, and discuss equivalent ways of specifying such a functor.

Our setting for Galois representations and change of basis is the following category.

Definition 2.2.1. Let RepMatG,g be the category whose objects are products of 2g-dim-
ensional Qℓ-representations ρ =

∏
ℓ ̸=p ρℓ where ρℓ : Galk →

∏
ℓ ̸=pGL2g(Qℓ). We abbreviate

Galk = G.
Morphisms M : ρ→ ρ′ consist of sets of matrices M := {Mℓ}ℓ̸=p, Mℓ ∈ GL2g(Qℓ), so that

ρ′ℓ(a) = M−1
ℓ ρℓ(a)Mℓ for all a ∈ Galk. Composing morphisms, i.e., successively conjugating

a representation, is given by multiplying matrices: M ′ ◦M = {MℓM
′
ℓ}ℓ ̸=p.

The Galois representations we asked for above could be considered as a functor from the
image of (the subcategory generated by) (2.1.5) under Ψ to RepMatG,g. However, this setting
has the disadvantage of not recording the representation on TA0 and its relationship with
the other representations. We remedy this shortcoming by adding the initial object (idA0)
and all the maps out of it to (2.1.5), yielding the following subcategory of IA0 (identity maps
not shown) in which (idA0) is now initial:

(2.2.2) A0

(idA0
)

�� (φ) ��

(ψ)

&&
A0

ψ

;;φ
// A

f
// B

If we like, we can think of this process more formally as taking the closure of the subcategory
(2.1.5) of IA0 under the initial object (idA0).

Definition 2.2.3. Let C be a category containing an initial object I and a subcategory S.
The closure S ′ of S under the initial object I is the smallest subcategory S ⊆ S ′ ⊆ C such
that I ∈ ObS ′ and I is initial in S ′.
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We may construct S ′ from S by adding the initial object I, its identity morphism, and
the (unique) morphisms from I to each object in S. The initialness of I guarantees that S ′

is closed under composition of morphisms.

Now call E be the subcategory of IA0 shown in (2.2.2). The image ΨE in TA0 is the
following (again not showing identity morphisms):

(2.2.4) Ψ(idA0)
, �

Ψψ

$$

� p

!!

� � Ψφ // Ψ(φ) �
� Ψf //

Oo

��

Ψ(ψ)
I i

vv
VA0

Giving a Galois representation on TA0, representations on TA and TB along with change of
basis matrices relating them all determines a functor F : ΨE → RepMatG,g. We can make the
following straightforward observations about such a functor F being completely determined
by just some of its information:

• The choice of FΨ(idA0) and a change of basis matrix such as FΨφ determines the
representation FΨ(φ).
• The matrices FΨφ and FΨf determine FΨψ. In fact, the choice of any two of these
determines the third.

We can use these ideas to make a more general statement as follows.

Lemma 2.2.5. Let D be a subcategory of IA0 closed under the initial object (idA0). A functor

F : ΨD → RepMatG,g

is determined by the representation FΨ(idA0), and, for each object (φ) ∈ IA0, the change of
basis matrices FΨφ.

Proof. This statement is a consequence of the fact that (idA0) is initial in D in combination
with the following properties of RepMatG,g: For any morphism M : ρ → ρ′ in RepMatG,g,
the data of the representation ρ and the change of basis matrices in M determines the rep-
resentation ρ′. Furthermore, the matrices giving the morphisms in RepMatG,g are invertible,
so if we have a composition of morphisms Mj = Mh ◦Mf , then any two of the morphisms
determine the third, e.g. Mj and Mf determine Mh. □

2.3. Producing change of basis matrices. In this section, we continue our examination
of the question posed at the beginning of section 2.2, now focusing on choosing matrices.
From our discussion in the previous section, we know we may reduce such questions to the
following: Given an isogeny φ : A0 → A and a choice of basis for TA0 ⊂ VA0, how do we
choose change of basis matrices from TA0 to Ψ(φ)?
The answer to this question depends on how the isogeny is given two us. In this section,

we give methods for two different situations, and show some small examples of isogenies
between elliptic curves:

(1) A = A0 and we have matrices for the transformation Vφ : VA0
∼−→ VA0.

(2) We are given kerφ.
6



We set the notational convention that the change of basis matrix between the ℓ-adic
portions of TA0 and Ψ(φ) is called Mφ,ℓ.

Case (1): Matrices of transformation. This case applies to, for instance, multiplication maps
as in Example 2.3.3.

Lemma 2.3.1. Let φ : A0 → A be an isogeny. Suppose we have a fixed basis for TA0 ⊆ VA0

and the linear transformation Vφ : VA0 → VA0 is given by matrices {Nφ,ℓ}ℓ. Then we may
choose Mφ,ℓ to be N−1

φ,ℓ .

Proof. Fix a prime ℓ and let P1, . . . , P2g be the fixed basis for TℓA0, where Nφ,ℓ is given in
terms of this basis. In this situation, the diagram (2.1.10) is as follows:

(2.3.2)

TℓA0
� � Tℓφ //

� _

⊗Q

��

TℓA0� _

⊗Q

��

K k

Ψ(φ)

yy
VℓA0

∼
Vℓφ=Nφ,ℓ

// VℓA0,

The elements φ(P1), . . . , φ(P2g) are a basis for Ψ(φ). The ith column ofNφ,ℓ is the coefficients
of the equation φ(Pi) = c1P1 + · · · + c2gP2g. Thus, N−1

φ,ℓ gives a change of basis matrix as
desired. Put another way, the matrix Nφ,ℓ maps the basis of TℓA, identified with the standard
coordinates, to a basis for the image Tℓφ(TℓA); a change of coordinates matrix should do
the inverse. □

Example 2.3.3. Let E/k be an elliptic curve and ℓ ̸= p a prime. Fix a basis for TℓE.
Consider the multiplication map [ℓ] : E → E. The matrix N[ℓ],ℓ for Vℓ[ℓ] : VℓE → VℓE and
the change of basis matrix M[ℓ],ℓ chosen as in Lemma 2.3.1 are the following:

N[ℓ],ℓ =

(
ℓ 0
0 ℓ

)
, M[ℓ],ℓ =

(
1
ℓ

0
0 1

ℓ

)
Remark 2.3.4. If φ is a homothety, as in Example 2.3.3, conjugating a representation by the
matrices Mφ,ℓ has no effect since it amounts to multiplying by a scalar and its inverse.

Case (2): Kernels. The kernel of an isogeny identifies it up to isomorphism. In diagram
(2.1.11), if f is an isomorphism between φ : A0 → A and ψ : A0 → B, then Vf−1(TB) = TA
and so Ψ(φ) = Ψ(ψ). Given H := ker(φ)(ksep), we first examine Ψ(φ) and then give a recipe
for choosing Mφ,ℓ.

Lemma 2.3.5. The following statements hold.

(a) If H ⊆ A0,ksep [m], then Ψ(φ) ⊆ 1
m
TA0 ⊆ VA0.

(b) Moreover, Ψ(φ) is the unique sublattice of 1
m
TA0 having the property thatm(Ψ(φ)/TA0)

is canonically identified with H.

Proof. (a) We may construct an isogeny f : A→ A0 so that f ◦φ = [m]. We see from (2.1.11)
with ψ = [m] that Ψ([m]) is an overlattice of Ψ(φ) inside VA0. Furthmore, if we consider
the diagram (2.1.10) in the case φ = [m], Ψ([m]) = 1

m
TA0 ⊆ VA0.

(b) Let ℓ be a prime with ℓn the highest power dividing m, Hℓ := H ∩ A0[ℓ
n], and Ψℓ(φ)

the ℓ-adic part of Ψ(φ). It suffices to prove the result on the ℓ-primary sublattice.
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We have TℓA0 ⊆ Ψℓ(φ) ⊆ 1
ℓn
TℓA0, and isomorphisms( 1

ℓn
TℓA0

)
/TℓA0

·ℓn−→ TℓA0/ℓ
nTℓA0

∼−→ A0[ℓ
n],

where the second isomorphism is given by projection onto A0[ℓ
n], where the projection

TℓA0 → A0[ℓ
n] factors through the quotient TℓA0/ℓ

nTℓA0. Thus, we will write this as [x] 7→
xn, where x = (xm)m ∈ TℓA0. Note that this isomorphism is canonical.
We also have Ψℓ(φ)/TℓA0 ⩽

(
1
ℓn
TℓA0

)
/TℓA0, so

ℓn(Ψℓ(φ)/TℓA0) = ℓnΨℓ(φ)/ℓ
nTℓA0 ⩽ TℓA0/ℓ

nTℓA0,

and we claim that the canonical isomorphism above restricts to an isomorphism

ℓnΨℓ(φ)/ℓ
nTℓA0

∼−→ Hℓ.

First, we show that the image of the restriction is contained in Hℓ. To see this, it is enough
to show that for any x ∈ ℓnΨℓ(φ), xn ∈ kerφ, i.e. φ(xn) = 0.

Since Tℓφ(x) = (φ(xm))m, we have that φ(xn) = Tℓφ(x)n. Also, we can write x = ℓny for
some y ∈ (Vℓφ)

−1(TℓA), since x ∈ ℓnΨℓ(φ). Now,

Tℓφ(x) = Tℓφ(ℓ
ny) = ℓnVℓφ(y).

Since Vℓφ(y) ∈ TℓA, this means Tℓφ(x) ∈ ℓnTℓA. This implies Tℓφ(x)n = φ(xn) = 0, as
desired.

Next, we show that the image of the restriction is all of Hℓ. Let y ∈ Hℓ, and choose a lift
ỹ = (ỹm)m ∈ TℓA0, so ỹn = y. If we write

ỹ = ℓn
( 1

ℓn
ỹ
)

with 1
ℓn
ỹ ∈ 1

ℓn
TℓA0 ⊆ VℓA0, we must show that 1

ℓn
ỹ ∈ Ψℓ(φ). Using the fact that φ(ỹn) =

φ(y) = 0 and ℓỹm+1 = ỹm, we check that

(Vℓφ)
( 1

ℓn
ỹ
)
=

1

ℓn
(Tℓφ)(ỹ) =

1

ℓn
(φ(ỹm))m =

1

ℓn
· ℓn(φ(ỹn+1), φ(ỹn+2), ...) ∈ TℓA.

Therefore, 1
ℓn
ỹ ∈ Ψℓ(φ), as desired.

Thus, the canonical isomorphism allows us to canonically identify ℓn(Ψℓ(φ)/TℓA0) ∼= Hℓ,
and hence m(Ψ(φ)/TA0) ∼= H. □

Remark 2.3.6. It is a standard fact that for an isogeny φ : A0 → A of abelian varieties with
kernel H, there is an isomorphism between H and the cokernel of Tφ : TA0 → TA. The
isomorphism in Lemma 2.3.5(b) can also be deduced from this perspective.

Construction 2.3.7. Lemma 2.3.5 suggests a method for choosing a basis of Ψ(φ) from
a minimal set of generators for H. Let m be (possibly a multiple of) the exponent of
H := kerφ. For each prime ℓ ∤ (#H), we may choose Mφ,ℓ to be the identity matrix.
Otherwise, we handle each prime divisor of #H separately, so suppose ℓn is the highest
power of ℓ dividing m.
Let P1, . . . P2g be a symplectic basis for TℓA0, and let Pi,j denote the restriction of Pi to

its ℓj-torsion part. Then it is possible to write a minimal generating set for Hℓ := H ∩A0[ℓ
n]

as a Z/ℓnZ-module in terms of linear combinations of P1,n, . . . , P2g,n with coefficients in
8



{0, 1, . . . , ℓn − 1}. If a1P1,n + · · · + a2gP2g,n is one of the generators for Hℓ, we may choose
an element

(2.3.8)
ã1
ℓn
P1 + · · ·+

ã2g
ℓn
P2g

of Ψφ ⊆ 1
ℓn
TA0, where ãi is any choice of lift of ai to Zℓ. The element (2.3.8) is indeed

in Ψ(φ) by Lemma 2.3.5(b): it is contained in 1
ℓn
TA0 and if we consider the quotient

ℓn( ã1
ℓn
P1 + · · ·+ ã2g

ℓn
P2g) mod ⟨P1, . . . , P2g⟩, we recover a1P1,n + · · ·+ a2gP2g,n.

To find a basis for Ψ(φ) in VℓA0, first take these lifts of each element in a minimal
generating set forH. Then, we need to complete the result as necessary to a (2g-dimensional)
basis for Ψφ by using linear combinations of P1, . . . , P2g with coefficients in {0, 1, . . . , ℓn−1}.
The coefficients of P1, . . . , P2g in each basis element will give the columns of the change of
basis matrix Mφ,ℓ.

We now put this recipe into practice with an example of an isogeny between elliptic curves.

Example 2.3.9. Let E be an elliptic curve. Choose a symplectic basis P1 = {P1,n}, P2 =
{P2,n} for TℓE. Consider the isogeny φ : E → F with kernel ⟨P1,1⟩.
The exponent of kerφ is ℓ. We may lift the coefficient 1 to 1 ∈ Zℓ, choosing the element

1
ℓ
P1 ∈ Ψℓφ. However, 1

ℓ
P1 on its own is not a basis for Ψℓφ. A natural choice for a second

basis element is P2, which gives:

Mφ,ℓ =

(
1
ℓ

0
0 1

)
.

By Construction 2.3.7, in fact any combination c1P1 + c2P2 with c1, c2 ∈ {0, 1, . . . , ℓ − 1}
that is linearly independent from 1

ℓ
P1 will work as a choice of second basis vector.

2.4. Change of basis matrices for polarizations. In this section, we look at transforma-
tion matrices in the case where the isogenies are polarizations or dual to isogenies we already
understand. We first recall some facts about constructing polarizations, discuss generally
how to apply our computational methods, and then show an example of a pushforward of the
principal polarization on an elliptic curve. Given these transformation matrices, Lemma 2.3.1
can be applied to determine change of basis matrices.

Polarization constructions.

Definition 2.4.1. An isogeny λ0 : A0 → A∨
0 is a polarization if there is a finite separable

field extension K ⊃ k and an ample line bundle L on A0,K so that λ0,K = φL, where
φL(x) := t∗xL⊗ L−1.

Given a polarization λ0 : A0 → A∨
0 associated with an ample line bundle L, we may

construct other polarizations.

Definition 2.4.2. Let f : A→ A0 be an isogeny. The pullback of λ0 by f is the composition
f ∗λ0 := f∨ ◦ λ0 ◦ f shown below. It is a polarization associated with the line bundle f ∗L.

A

f
��

f∗λ0 // A∨

A0
λ0 // A0

f∨

OO
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Definition 2.4.3. Let g : A0 → A be an isogeny so that ker(g) is isotropic under the pairing
given by λ0, and let d be the minimum value so that ker(g) ⊆ ker(dλ0). The pushforward
of λ0 by g is the map g∗λ0 filling in the following diagram, which is a polarization [Mum70,
Corollary, p. 231].

(2.4.4)

A0
dλ0 //

g

��

A∨
0

A
g∗λ0 // A∨

g∨

OO

The value of d in the definition of the pushforward of a polarization divides the exponent eg
of g since A0[eg] ⊆ ker(egλ0).

Matrices of transformation for polarizations and dual isogenies. For a polarization λ0 whose
degree is coprime to p, we say it has type D := (d1, . . . , dg), where di ∈ N are the unique
values such that di | di+1 and there is a group isomorphism ker(λ0) ≃ Z/d1Z× · · · × Z/dgZ.
Given the type D of a polarization λ0, there is a standard choice of matrices giving the

transformation Vλ0 : VA0 → VA∨
0 . If A0 is complex, we may choose a symplectic basis

for its underlying torus and the dual basis for A∨
0 , so that the following matrix gives the

polarization, where D denotes the diagonal matrix with entries given by the type [BL04,
§3.1]:

(2.4.5)

(
0 D
−D 0

)
.

This is also the matrix for the bilinear pairing that Tλ0 gives on TA0. Working over k, we
may replace D with Dℓ, the factors of ℓ in the type, to choose the matrices {Nλ0,ℓ}ℓ of the
transformation Vλ0 : VA0 → VA∨

0 . In making these choices, we are identifying VℓA
∨
0 with the

dual vector space of VℓA0 and choosing its basis to be dual to that of VℓA0. We may choose
the change of basis matrix Mλ0,ℓ to be N−1

λ0,ℓ
by Lemma 2.3.1. We may apply Lemma 2.3.1

to this situation since we have chosen isomorphisms VA0 ≃ VA∨
0 identifying the coordinates

of these two vector spaces.
Let f : A→ B be an isogeny and suppose we have matrices {Nf,ℓ}ℓ for the transformation

Vf : VA→ VB. Inherent in such a choice of matrices is a choice of bases on VℓA and VℓB (and
if we like, isomorphisms VℓA ≃ VℓB identifying those bases). We may identify VℓA

∨, VℓB
∨

with the dual vector spaces of VℓA, VℓB and choose their bases to be dual to those of VℓA, VℓB.
Having made these choices, the matrices of the transformation Vf : VB∨ → VA∨ are:

(2.4.6) {Nf∨,ℓ}ℓ, Nf∨,ℓ := NT
f,ℓ.

Putting these ideas together, if we are given matrices {Nλ0,ℓ}ℓ of the transformation
Vλ0 : VA0 → VA∨

0 for a polarization λ0 : A0 → A∨
0 and matrices {Nf,ℓ}ℓ for an isogeny

f : A→ A0, then the matrices giving the pullback transformation Vf ∗λ0 : VA→ VA∨ are:

(2.4.7) {Nf∗λ,ℓ}ℓ, Nf∗λ,ℓ = NT
f,ℓNλ,ℓNf,ℓ.

The matrices {Nf∗λ,ℓ}ℓ also give the bilinear pairing on VA associated with polarization f ∗λ0.
Similarly to the discussion for polarizations above, we may apply Lemma 2.3.1 to find change
of basis matrices.

We now examine a specific example of a pushforward of a polarization.
10



Example 2.4.8. Let E be an elliptic curve and φ : E → F a cyclic isogeny as in Ex-
ample 2.3.9. We add the assumption that the choice of basis for VℓE is such that the
transformation matrices for the principal polarization λ of E and the isogeny φ acting on
VℓE are the following:

Nλ,ℓ =

(
0 1
−1 0

)
, Nφ,ℓ =

(
ℓ 0
0 1

)
.

The kernel of φ is isotropic under the pairing given by Nλ,ℓ and ℓ is the smallest value so
that ker(g) ⊆ ker(ℓλ). Thus, we can determine the pushforward φ∗λ, which we compute
using (2.4.4):

Nφ∗λ,ℓ = N−1
φ∨,ℓNℓλ0,ℓN

−1
φ,ℓ = (NT

φ,ℓ)
−1Nℓλ0,ℓN

−1
φ,ℓ =

(
1
ℓ

0
0 1

)(
0 ℓ
−ℓ 0

)(
1
ℓ

0
0 1

)
=

(
0 1
−1 0

)
.

Thus, the pushforward φ∗λ is a principal polarization on F .

3. Constructions and computations

In this section, we construct the abelian surfaces A arising in Theorem 1.2.1. We will
then use the technical tools developed in section 2 to compute the Galois action on A[ℓ] and
on A∨[ℓ] by comparing TℓA and TℓA

∨ inside VℓA0 for A0 a third abelian surface isogenous
to both A and A∨. We also confirm that the result agrees with the twisted contragredient
action discussed in the introduction.

3.1. Construction of the abelian surfaces. Let k be a field with absolute Galois group
Galk := Gal(ksep | k) and let ℓ ̸= char k be prime. Recalling the introduction, a necessary
but not sufficient condition for A[ℓ] ̸≃ A∨[ℓ] is that every polarization on A has degree
divisible by ℓ. We produce abelian surfaces satisfying this condition by gluing together two
(non-isogenous) elliptic curves along a subgroup of order ℓ. There are many references for
this construction, for example it is described on MathOverflow [CP10], implicitly suggested
as an exercise [Gor02, Exercise 6.35], and even recently exhibited [BS23, Theorem 2.5]. We
present a brief account, for completeness.

Construction 3.1.1. Let E1 and E2 be elliptic curves over k and let C1 ⩽ E1[ℓ] and

C2 ⩽ E2[ℓ] be cyclic subgroups such that c : C1
∼−→ C2 are isomorphic as Galk-modules. Let

G := ⟨(P, c(P )) : P ∈ C1⟩ ⩽ E1 × E2 and A := (E1 × E2)/G

with the quotient map q : E1 × E2 → A.

In section 4.1, we will use Construction 3.1.1 in the proof of Theorem 1.2.1.

Lemma 3.1.2. With setup as in Construction 3.1.1, the following statements hold.

(a) A is an abelian surface over k with a (1, ℓ)-polarization over k.
(b) For a field extension k′ ⊇ k, if there is no isogeny E1 → E2 over k′, then any

polarization on A over k′ has degree divisible by ℓ.

Proof. Part (a) follows since G is stable under Galk by construction, and A obtains a
(1, ℓ)-polarization λ from the pushforward under q (cf. section 2.4) of the principal product
polarization ι on E1 × E2.
Next, part (b). Without loss of generality, we may replace k by k′. Let λ : A → A∨ be

a polarization (over k) of degree d2. Consider the pullback q∗λ, a polarization on E1 × E2.
11



The composition ϕ := ι−1 ◦ q∗λ ∈ End(E1 × E2) is a symmetric (fixed under the Rosati
involution) endomorphism of degree (ℓd)2. Since E1 and E2 are not isogenous, we have

End(E1 × E2) ≃ End(E1)× End(E2).

The ring of symmetric endomorphisms of an elliptic curve is Z, so ϕ = (d1, d2) with d1, d2 ∈
Z>0 satisfying d1d2 = ℓd. Since ϕ factors through q, ker q ⊆ kerϕ = E1[d1] × E2[d2], so
ker q ∩ E2 = ker q ∩ E2[d2]. Now suppose that ℓ ∤ d. Without loss of generality, ℓ | d1 and
ℓ ∤ d2, which implies ker q ∩ E2 must be trivial. However, ker q intersects both E1 and E2

nontrivially, and we have a contradiction. □

Over number fields, we can exhibit infinitely many generic instances of Construction 3.1.1
as follows. We begin with the elliptic curves.

Proposition 3.1.3. Let ℓ ⩽ 7 be prime and let K be a number field. Then the following
statements hold.

(a) There exist infinitely many elliptic curves E over K with a cyclic subgroup C ⩽
E[ℓ](Kal) stable under GalK.

(b) Let (E,C) be as in (a). Then there exist infinitely many pairs (E ′, C ′) as in (a) such
that C ≃ C ′ as GalK-modules.

Proof. First part (a). Recall that the modular curve Y0(ℓ) parametrizes isomorphism classes
of pairs (E,C) where E is an elliptic curve and C ⩽ E[ℓ] is a cyclic subgroup of order ℓ, and
that Y0(ℓ) ⊆ X0(ℓ) is an open subscheme. Then part (a) follows from the fact that we have
X0(ℓ) ≃ P1 for these values of ℓ, classically known. More precisely, there are infinitely many
j-invariants in K with j ̸= 0, 1728 such that any elliptic curve E over K with j(E) = j has
a cyclic subgroup of order ℓ stable under GalK .
We next prove (b), with (E,C) as in (a). By twisting Y1(ℓ), we will construct a moduli

space for the desired pairs (E ′, C ′). We follow the same strategy as in the construction of
families of elliptic curves with a fixed mod N representation (see e.g. Silverberg [Sil97]). For
ℓ = 2 we just refer again to (a): the GalK-action on C is trivial.

For ℓ = 5, 7, there exists a universal elliptic surface πℓ : Euniv,1(ℓ) → Y1(ℓ) over Y1(ℓ),
equipped with (a zero section and) a section Puniv of order ℓ defined over Q. For ℓ = 3,
a similar statement holds over the open subset of Y1(ℓ) removing the points above j = 0
(universal for elliptic curves over a base S such that j is invertible on S). For ℓ ⩽ 7, we have
Y1(ℓ) birational to P1.
Choosing an isomorphism ι : CKal → (Z/ℓZ)Kal over Kal, the map σ 7→ ι−1 ◦ σ(ι) defines

a cocycle on GalK with values in (Z/ℓZ)×. By universality, there is a natural injective
homomorphism

(3.1.4) (Z/ℓZ)× → AutEuniv,1(ℓ)

defined by a ∈ (Z/ℓZ)× sends Puniv 7→ aPuniv. Composing, we obtain a cocycle c on GalK
with values in AutEuniv,(ℓ). We let Euniv,C(ℓ) be the twist of Euniv,1(ℓ) by c.
We similarly obtain a map (Z/ℓZ)× → (AutY1(ℓ))(Q) (factoring through (Z/ℓZ)×/{±1}),

giving a twist YC(ℓ) defined over K. But [(E,C)] ∈ YC(ℓ)(K) and YC(ℓ) still has genus
zero, so YC(ℓ) is again birational to P1. By compatibility, we obtain an elliptic surface
πC : Euniv,C(ℓ)→ YC(ℓ).

Let Puniv,C be the section of Euniv,C(ℓ) defined over Kal obtained from the image of Puniv

under the isomorphism Euniv,1(ℓ)Kal ≃ Euniv,C(ℓ)Kal . Then for every t ∈ YC(ℓ)(K) we obtain
12



an elliptic curve E ′ := π−1
C (t) and it follows by definition of the twist that C ′ := ⟨Puniv,C|t⟩ is

a cyclic subgroup of order ℓ, stable under GalK , and isomorphic to C as a GalK-module. □

Example 3.1.5. If C has trivial GalK-action, i.e., if C = ⟨P ⟩ with P ∈ E[ℓ](K), then
the twist YC(ℓ) is again just Y1(ℓ). This case is enough for our constructions, so part (b)
of Proposition 3.1.3 is extra—we keep it for the added generality and naturality in the
construction.

3.2. Computation of the Galois action on A. Let A be an abelian surface over Q as in
Construction 3.1.1 with (E1, C1) and (E2, C2) satisfying C1 ≃ C2 as GalQ-modules. (There
are infinitely many, by Proposition 3.1.3.) To understand the action of the Galois group on
A[ℓ], we use the image of the Galois action on Tℓ(E1 × E2), along with a choice of basis for
Ψ(q) ⊂ Vℓ(E1 × E2), as explained in Lemma 2.2.5.

Here and in subsequent sections we use the computational ideas outlined in section 2. In
our example of interest, the isogenies all have degrees which are powers of ℓ, so we need
only consider the ℓ-adic portion of the Tate modules in question. In particular, we will
be interested in the mod ℓ representation, which we obtain by reducing modulo ℓ the Tate
module.

Lemma 3.2.1. Let ℓ ⩽ 7 be prime. Then the following statements hold.

(a) For (E,C) such that [(E,C)] ∈ Y0(ℓ)(Q) ⊂ P1, the image of the ℓ-adic Galois
representation

ρE,ℓ : GalQ → Aut(E[ℓ](Qal)) ≃ GL2(Zℓ)
is contained in

(3.2.2)

{(
a b
ℓc d

)
∈ M2(Zℓ) : a, d ∈ Z×

ℓ

}
⩽ GL2(Zℓ)

in any basis P1, P2 for Tℓ(E) such that P1 mod ℓ generates C. In particular,

ρE,ℓ : GalQ → Aut(E[ℓ](Qal)) ≃ GL2(Fℓ)
has image contained in{(

a b
0 d

)
∈ M2(Fℓ) : a, d ∈ F×

ℓ

}
⩽ GL2(Fℓ).

(b) Outside of a thin set in Y0(ℓ)(Q), the image ρE,ℓ(GalQ) is the entire subgroup in
(3.2.2).

Since Q is Hilbertian, when Et ∈ Y0(ℓ)(Q) ⊆ P1 are ordered by the height of t ∈ P1, the
conclusion of Lemma 3.2.1(b) holds for a density 1 subset.

Proof. Part (a) follows by a direct calculation.
Part (b) follows from Hilbert irreducibility, which we can make precise in this case as

follows: if the image of the Galois representation is H ⩽ GL2(Zℓ), a group smaller than the
one given, then there exists a (possibly branched) cover YH → Y0(ℓ) of degree ≥ 2 where YH
is the associated modular curve (see Deligne–Rapoport [DR73, IV-3.1] or Rouse–Zureick-
Brown [RZB15, section 2]) such that [(E,C)] ∈ Y0(ℓ)(Q) lifts to YH(Q). There are finitely
many minimal such H ⩽ GL2(Zℓ), so the errant curve lies in a thin set of Y0(ℓ)(Q). □

Choose a basis {P1, P2, Q1, Q2} for Tℓ(E1 × E2) ≃ Z4
ℓ as in Lemma 3.2.1, specifically:
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• (P1 mod ℓ) ∈ C1(Qal) ⊂ E1[ℓ](Qal),
• (Q1 mod ℓ) ∈ C2(Qal) ⊂ E2[ℓ](Qal),
• {P1, P2} is a symplectic basis for TℓE1, and
• {Q1, Q2} is a symplectic basis for TℓE2.

Then the Galois action on (E1 × E2)[ℓ](Qal) has image contained in the subgroup

(3.2.3)



a1 b1 0 0
0 d1 0 0
0 0 a2 b2
0 0 0 d2

 ∈ M4(Fℓ) : a1, d1, a2, d2 ∈ F×
ℓ

 ⩽ GL4(Fℓ).

When we pick an isomorphism C1 ≃ C2, this identifies the cyclic subgroups generated by P1

and Q1 as Galois modules, hence they have the same Galois action: this implies that a1 = a2.
Similarly, the Galois equivariance of the Weil pairing (given explicitly by the determinant)
[Sil09, section III.8] implies that ρE1×E2,ℓ(GalQ) is contained in

(3.2.4) Gℓ :=



a1 b1 0 0
ℓc1 d1 0 0
0 0 a2 b2
0 0 ℓc2 d2

 ∈ M4(Zℓ) :
a1, d1, a2, d2 ∈ Z×

ℓ ,
a1 ≡ a2 (mod ℓ), and
a1d1 − ℓb1c1 = a2d2 − ℓb2c2

 ⩽ GL4(Zℓ).

We now show that there are infinitely many pairs where the image in fact surjects onto
this group.

Proposition 3.2.5. There are infinitely many pairs E1, E2 of elliptic curves satisfying the
following:

(a) The image of ρE1×E2,ℓ is the subgroup (3.2.4); in particular, there exist cyclic sub-
groups C1 ⩽ E1[ℓ](Qal) and C2 ⩽ E2[ℓ](Qal) stable under GalQ such that C1 ≃ C2 as
GalQ-modules; and

(b) E1 is not geometrically isogenous to E2.

Moreover, the products E1 × E2 fall into infinitely many distinct geometric isogeny classes.

Proof. Let (E,C) be such that [(E,C)] ∈ Y0(ℓ)(Q) lies outside the thin set of Lemma 3.2.1(b),
so ρE,ℓ has the large image (3.2.2). By an entirely analogous argument, outside of a thin
subset of YC(ℓ), every [(E ′, C ′)] ∈ YC(ℓ) also has image (3.2.2).

We consider the family AC := E × Euniv,C(ℓ) over YC(ℓ). We claim that over the generic
point, the ℓ-adic Galois representation ρAC ,ℓ : GalQ → GL2(Zℓ) has image given by (3.2.4):
indeed, the only constant subextension of Q(Euniv,C [ℓ

∞]) over Q(Euniv,C) ≃ Q(t) is given
by Q(C, ζℓ). The result then follows by the Hilbert irreducibility theorem: see Zywina
[Zyw23, Lemma 2.2]. In particular, the desired conclusion holds for a density 1 subset of
t ∈ YC(ℓ)(Q) ⊆ P1.
For part (b), let E1 × E2 have large image as in (a), and suppose that E1 is isogenous to

E2 over a number field K. Then this isogeny shows that the ℓ-adic representation ρE1,K ,ℓ

is conjugate to ρE2,K ,ℓ (over K). Concretely, restricting the Galois representation to K,
we conclude that ρ(E1×E2)K ,ℓ(GalK) lies in a subgroup abstractly isomorphic to ρE1,K ,ℓ, a
contradiction as this is a proper subgroup of Gℓ.

The final statement follows quite generally, see Cantoral-Farfán–Lombardo–Voight [FLV23+,
Proposition 6.6.1]: even for fixed E1, the curves E2 fall into infinitely many distinct geometric
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isogeny classes. We also give a simpler proof in this special case. Recall (Tate’s algorithm)
that E ′ has bad potentially multiplicative reduction at p if and only if ordp(j(E)) < 0
has negative valuation. Let t be a parameter on YC(ℓ). We conclude in the style of
Euclid: for any finite set {(E ′

i, C
′
i)}i ∈ YC(ℓ)(Q) corresponding to ti ∈ Q, we can find p

such that ordp(j(E
′
i)) ≥ 0 and there exists t∗ ∈ Q giving (E∗, C∗) ∈ YC(ℓ)(Q) such that

ordp(j(Et∗)) < 0. Indeed, this is determined by congruence conditions on the numerator and
denominator, and the resulting set has positive density so intersects the density 1 subset. If
(E∗, C∗) has j(E∗) = j(t∗) then E∗ cannot be geometrically isogenous to any E ′

i, since each E
′
i

has potentially good reduction whereas E∗ has bad potentially multiplicative reduction. □

We will also make use of the following variant, when C has trivial Galois action.

Proposition 3.2.6. There are infinitely many pairs E1, E2 of elliptic curves satisfying the
following:

(i) The image of ρE1×E2,ℓ is the subgroup

(3.2.7)



a1 b1 0 0
ℓc1 d1 0 0
0 0 a2 b2
0 0 ℓc2 d2

 ∈ M4(Zℓ) :
a1 ≡ a2 ≡ 1 (mod ℓ), and
a1d1 − ℓb1c1 = a2d2 − ℓb2c2

 ⩽ GL4(Zℓ);

in particular, there exist points P1 ∈ E1[ℓ](Q) and P2 ∈ E2[ℓ](Q) of order ℓ; and
(ii) The products E1 × E2 fall into infinitely many distinct geometric isogeny classes.

Proof. Repeat the same argument as in Proposition 3.2.5, but sourcing the initial pair in the
parameter space Y1(ℓ). □

For convenience, we rewrite the elements in Gℓ (defined in (3.2.4)) as

(3.2.8)


a+ x1ℓ b1 + y1ℓ 0 0
w1ℓ d+ z1ℓ 0 0
0 0 a+ x2ℓ b2 + y2ℓ
0 0 w2ℓ d+ z2ℓ

 =

(
A1 0
0 A2

)

where:

• a, d ∈ {1, . . . , ℓ− 1},
• b1, b2 ∈ {0, . . . , ℓ− 1}, and
• wi, xi, yi, zi ∈ Zℓ

still subject to the condition (Weil pairing) that

(3.2.9) det(A1) = det(A2).

Now, we follow the recipe given in Construction 2.3.7 to write down the change of
coordinates matrix for Ψ(q) ⊆ Vℓ(E1 × E2). Let P1,1 := P1 mod ℓ ∈ E1[ℓ](Qal) and
Q1,1 := Q1 mod ℓ ∈ E2[ℓ](Qal), so we can write Ā =

(
Ē1 × Ē2

)
/⟨P1,1 + Q1,1⟩. Then the

change of coordinates matrix Mq,ℓ is given by

(3.2.10) Mq,ℓ =


1 0 1/ℓ 0
0 1 0 0
0 0 1/ℓ 0
0 0 0 1

 .
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As explained in section 2.2 (cf. Lemma 2.2.5), to understand the Galois action on A[ℓ](Qal),
we conjugate the elements (3.2.8) above by this change of coordinates matrix, which gives

(3.2.11)


a+ x1ℓ b1 + y1ℓ x1 − x2 −b2 − y2ℓ
w1ℓ d+ z1ℓ w1 0
0 0 a+ x2ℓ b2ℓ+ y2ℓ

2

0 0 w2 d+ z2ℓ


with the same conditions on the variables. To get the image of ρ̄A,ℓ : GalQ → GL4(Fℓ), we
reduce this subgroup modulo ℓ, as given in the following proposition.

Proposition 3.2.12. The image of ρ̄A,ℓ : GalQ → GL4(Fℓ) is given by the subgroup

a b1 x1 − x2 −b2
0 d w1 0
0 0 a 0
0 0 w2 d

 ∈ M4(Fℓ) :
a, d ∈ F×

ℓ

bi, wi, xi ∈ Fℓ

 ⩽ GL4(Fℓ).

Proof. We need to check that the determinant condition (3.2.9) being satisfied does not
constrain our choices of variables above: it requires that

ad+ (dx1 + az1 − b1w1)ℓ+ (x1z1 − w1y1)ℓ
2 = ad+ (dx2 + az2 − b2w2)ℓ+ (x2z2 − w2y2)ℓ

2.

We may deduce that

(3.2.13) z1 − z2 = a−1(b1w1 − b2w2 − dx1 + dx2) ∈ Fℓ
so for every a, d ∈ F×

ℓ and b1, b2, w1, w2, x1, x2 ∈ Fℓ, we can solve for z1 with z2 = 0 to obtain
a solution to the determinant equation. □

3.3. Computation of the Galois action on A∨ via the contragredient. Next, we
would like to compare this to the Galois action on A∨[ℓ](Qal). To do so, we make use of the
following, as indicated in the introduction.

Lemma 3.3.1. Given the representation ρ̄A,ℓ : GalQ → Aut(TℓA), there is an isomorphism
ρA∨,ℓ

∼= ρ∗A,ℓ ⊗ εℓ, where ρ∗A,ℓ is the dual or contragredient representation and εℓ is the
cyclotomic representation. In particular, there is an isomorphism ρ̄A∨,ℓn

∼= ρ̄∗A,ℓn ⊗ εℓ for
all n ∈ Z≥1, where ρ̄A,ℓn : GalQ → AutFℓ

(A[ℓn]).

Proof. There is a tautological pairing TℓA× TℓA∨ → Zℓ(1) given by taking the inverse limit
over n of the Weil pairing A[ℓn] × A∨[ℓn] → µℓn . This is a perfect bilinear pairing, hence
non-degenerate, and so the result follows. □

By the Weil pairing, the cyclotomic character is given by multiplication by ad [Sil09,
section III.8]. Thus, when we take the inverse transpose of matrices as in Proposition 3.2.12
and scale by this factor, we get the following.

Proposition 3.3.2. The image of ρ̄A∨,ℓ : GalQ → GL4(Fℓ) is given by the subgroup


d 0 0 0
−b1 a 0 0

z1 − z2 −w1 d −w2

b2 0 0 a

 ∈ M4(Fℓ) :
a, d ∈ F×

ℓ

bi, wi, xi ∈ Fℓ

 ⩽ GL4(Fℓ),

where z1 − z2 = a−1(b1w1 − b2w2 − dx1 + dx2) ∈ Fℓ.
16



Proof. This proposition follows from the explanation above, but for the (3, 1)-entry which is

a−1(b1w1 − b2w2 − dx1 + dx2) = z1 − z2
by the determinant condition (3.2.13). □

Remark 3.3.3. We observe directly that the semisimplifications remain as they were for
E1 × E2, corresponding to the representation χ⊕2 ⊕ (εℓχ

−1)⊕2 where χ : GalQ → (Fℓ)×
corresponds to the Galois action on C1 ≃ C2.

3.4. Computation of the Galois action on A∨ via isogenies. We give an alternate
computation of the Galois action on A∨[ℓ](Qal) using the framework developed in section 2,
which avoids directly using the contragredient representation. To do this, we will use the
isogeny between A and A∨ given by the (1, ℓ)-polarization λ on A of Lemma 3.1.2 to relate
their Galois representations.

We first observe that the polarization λ on A is the pushforward of the principal polariza-
tion λ0 on E1×E2 by the quotient isogeny q (cf. Definition 2.4.3), as shown in the following
commutative diagram:

(3.4.1)

E1 × E2
ℓλ0 //

q

��

(E1 × E2)
∨

A
λ //λ // A∨.

q∨

OO

Using the framework developed in section 2.2, this commutative diagram allows us to directly
compare the actions of the Galois group on TℓA and TℓA

∨ as sublattices of Vℓ(E1 × E2).
Taking E1 ×E2 to be A0, we have already chosen a change of basis matrix Mq,ℓ (3.2.10) for
Ψ(q) in Vℓ(E1 ×E2) and computed the Galois action on TℓA in (3.2.11). We could compute
the Galois action on TℓA

∨ either by choosing a change of basis matrix Mλ◦q,ℓ and using it to
conjugate the action on Tℓ(E1 × E2) or, equivalently, by choosing a change of basis matrix
Mλ,ℓ relating Ψ(q) to Ψ(λ ◦ q)and using it to conjugate the action on TℓA ≃ Ψ(q). We will
take the second approach here.

First, we compute a matrix of transformation for the map Vℓλ : VℓA → VℓA
∨ induced by

the polarization λ, which will also allow us to computationally verify that the pushforward
of λ0 by q is a (1, ℓ)-polarization.

We will use the choices of basis for Tℓ(E × F ) and TℓA from section 3.2 and then pick
the basis of TℓA

∨ to be dual to that of TℓA. We may take the matrix of Nℓλ0,ℓ to be the
following: 

0 ℓ 0 0
−ℓ 0 0 0
0 0 0 ℓ
0 0 −ℓ 0

 .

Then from (3.4.1) we have Nℓλ0,ℓ = Nq∨,ℓNλ,ℓNq,ℓ. Using Lemma 2.3.1 and (2.4.6), we may
rearrange this to Nλ,ℓ =MT

q,ℓNℓλ0,ℓMq,ℓ, which we now compute:
1 0 1/ℓ 0
0 1 0 0
0 0 1/ℓ 0
0 0 0 1


T 

0 ℓ 0 0
−ℓ 0 0 0
0 0 0 ℓ
0 0 −ℓ 0



1 0 1/ℓ 0
0 1 0 0
0 0 1/ℓ 0
0 0 0 1

 =


0 ℓ 0 0
−ℓ 0 −1 0
0 1 0 1
0 0 −1 0

 .
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The cokernel of this matrix (which is isomorphic to the kernel of λ) applied to TℓA has ℓ2

elements, confirming that the type of this polarization λ is (1, ℓ). As discussed in section 2.4,
we may apply Lemma 2.3.1 to find that the change of coordinates matrixMλ,ℓ = N−1

λ,ℓ . Thus,

Mλ,ℓ =


0 −1/ℓ 0 1/ℓ
1/ℓ 0 0 0
0 0 0 −1
−1/ℓ 0 1 0

 .

Now, to understand the action of the Galois group on Ψ(λ◦q), we conjugate the subgroup
corresponding to the action on TℓA given in (3.2.11), by Mλ,ℓ. This gives the subgroupM−1

λ,ℓ


a+ x1ℓ b1 + y1ℓ x1 − x2 −b2 − y2ℓ
w1ℓ d+ z1ℓ w1 0
0 0 a+ x2ℓ b2ℓ+ y2ℓ

2

0 0 w2 d+ z2ℓ

Mλ,ℓ ∈ M4(Zℓ) :
a, d ∈ F×

ℓ ,
bi ∈ Fℓ,
wi, xi, yi, zi ∈ Zℓ



=




d+ z1ℓ −w1ℓ 0 0
−b1 − y1ℓ a+ x1ℓ 0 0
z1 − z2 −w1 d+ z2ℓ −w2

b2 + y2ℓ 0 −b2ℓ− y2ℓ2 a+ x2ℓ

 ∈ M4(Zℓ) :
a, d ∈ F×

ℓ ,
bi ∈ Fℓ,
wi, xi, yi, zi ∈ Zℓ


in GL4(Zℓ). This subgroup reduces mod ℓ to the subgroup


d 0 0 0
−b1 a 0 0

z1 − z2 −w1 d −w2

b2 0 0 a

 ∈ M4(Fℓ) :
a, d ∈ F×

ℓ

bi, wi, zi ∈ Fℓ

 ⩽ GL4(Fℓ),

which agrees with that calculated in Section 3.3, as it should.

4. Proofs of Theorems

4.1. Proof of the main result. We now prove Theorem 1.2.1, which we restate for conve-
nience.

Theorem 4.1.1. Let ℓ ⩽ 7 be prime. Then there exist infinitely many pairwise geometrically
non-isogenous abelian surfaces A over Q such that A[ℓ] ̸≃ A∨[ℓ] as group schemes over Q.

Proof. Let A be an abelian surface over Q as in Construction 3.1.1, with E1, E2 coming from
the infinite set in Proposition 3.2.5.

Let σ ∈ GalQ. Then Proposition 3.2.12 gives

ρ̄A,ℓ(σ) =


a b1 x1 − x2 −b2
0 d w1 0
0 0 a 0
0 0 w2 d

 ∈ GL4(Fℓ)
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for some a, b1, b2, x1, x2, w1, w2, d ∈ Fℓ with a, d ∈ F×
ℓ . Then Proposition 3.3.2 gives

ρ̄A∨,ℓ(σ) =


d 0 0 0
−b1 a 0 0

z1 − z2 −w1 d −w2

b2 0 0 a


where

z1 − z2 = a−1(b1w1 − b2w2 − dx1 + dx2) ∈ Fℓ.
Now, for ℓ = 2, we check computationally that there is no M ∈ GL4(F2) for which

Mρ̄A,2(σ)M
−1 = ρ̄A∨,2(σ) for all σ ∈ GalQ; see the Magma [BCP97] code [FHV23]. Hence,

these representations are not isomorphic and A[2] is not isomorphic to A∨[2] over Q.
It remains to show that the same is true for ℓ ∈ {3, 5, 7}. We consider one-dimensional

subspaces in F4
ℓ fixed by either subgroup of GL4(Fℓ). We observe that both subgroups have

a unique Galois-stable line: in A[ℓ](Qal), it is the span of P1, the first basis element, and the
Galois group acts on it by multiplcation by a. In A∨[ℓ](Qal), the fixed line is the span of Q1,
the third basis element, and the Galois group acts on it by multiplication by d. On A[ℓ](Qal),
the action by a is the character χ of GalQ (introduced in Remark 3.3.3). On A∨[ℓ](Qal), by
the Weil pairing, the action by d is the character εℓχ

−1, where εℓ is the cyclotomic character
of GalQ. Of course χ ≃ εℓχ

−1 if and only if χ2 ≃ εℓ. But this equation has no solution in the
character group of GalQ! Indeed, the character χ has order dividing ℓ− 1 so χ2 has order a
proper divisor of ℓ− 1; but εℓ has order exactly ℓ− 1. □

4.2. Associated permutation representations. Often, in understanding the cohomology
of a smooth projective variety X over a field k, we may first try to identify the image of the
cycle class map

CHiXksep → H2i
ét (Xksep ,Qℓ′(i)),

where ℓ′ is a prime different from the characteristic of k. The image, as a Galk-sub-
representation of H2i

ét (Xksep ,Qℓ′(i)), is the Qℓ′-linear representation associated to the per-
mutation representation determined by the Galois action on the codimension i algebraic
cycles in Xksep .
Thus, when studying the representations associated to A[ℓ](ksep) and A∨[ℓ](ksep), it is

natural to ask about their corresponding permutation representations and the induced lin-
ear representations over a field F . In fact, in [FH23], the induced linear representations
corresponding to A[3](Qal) and A∨[3](Qal) arise as sub-representations in the middle ℓ′-adic
cohomology of generalized Kummer fourfolds over Q associated to A and A∨, respectively.
Following the notation in the introduction, for an abelian surface A, let πA,ℓ : GalQ →

Sym(A[ℓ]) ≃ Sℓ4 be the permutation representation associated to ρ̄A,ℓ.

Proposition 4.2.1. Let A be an abelian surface constructed as in Construction 3.1.1 and
and coming from a pair E1, E2 as in Proposition 3.2.5. Then the following statements hold.

(i) If ℓ = 2, then πA,2 and πA∨,2 are isomorphic.
(ii) If ℓ = 3 and the Galois action on C1 ≃ C2 is nontrivial, then πA,3 and πA∨,3 are

isomorphic.

Proof. The subgroups from Propositions 3.2.12 and 3.3.2 can be considered as subgroups of
Sℓ4 acting on F4

ℓ . We check in Magma that these subgroups are conjugate subgroups in Sℓ4
for ℓ = 2, 3 [FHV23]. □
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The above proposition shows, interestingly, that the change from the representation ρ̄A,ℓ
to the permutation representation πA,ℓ is non-trivial (that is, information is lost). However,
this is not always the case, as the next result shows.

Next, we consider abelian surfaces A constructed as in Construction 3.1.1 but with C1 ≃
C2 ≃ (Z/ℓZ)Q having trivial Galois action, as in Proposition 3.2.6. In this case, the fact that
A[ℓ] ̸≃ A∨[ℓ] as finite group schemes can be read off directly from the Galois representations in
Proposition 3.2.12 and Proposition 3.3.2: for ℓ ∈ {3, 5, 7}, A[ℓ](Q) ̸= ∅ whileA∨[ℓ](Q) = ∅ (as
above, we check ℓ = 2 separately by hand, since both have ℓ-torsion points overQ). Moreover,
at least for ℓ = 3, the following shows that the permutation and linear representations remain
non-isomorphic.

Proposition 4.2.2. Let A be an abelian surface constructed as in Construction 3.1.1 with
C1 ≃ C2 having trivial Galois action and coming from a pair E1, E2 as in Proposition 3.2.6.

Then the permutation representations πA,3 and πA∨,3 are not isomorphic. Moreover, the
induced linear representations over any field F with charF = 0 are not isomorphic.

Proof. We can see this computationally in multiple ways; see the Magma code provided
[FHV23]. For the permutation representations, we check that the permutation characters
are not isomorphic. For the induced linear representations, we compute the multiplicities of
the trivial representation in the induced linear representations; we find that the multiplicities
are different. (We check this over Q, but the result holds over any field not of characteristic
2 or 3 by Maschke’s theorem.) Since the induced linear representations are not isomorphic,
this also shows that the permutation representations cannot be isomorphic. □

4.3. Final remarks. We pause to prove the statement about semisimplifications made in
the introduction.

Lemma 4.3.1. Let A be an abelian variety over a number field K and let ℓ be prime.
Then the semisimplifications of the mod ℓ Galois representations attached to A and A∨ are
equivalent.

Proof. Let λ : A → A∨ be a polarization. Then for all nonzero prime ideals p in the ring of
integers of K that are of good reduction for A, we obtain an isogeny λp : AFp → A∨

Fp
over

the residue field Fp between the reductions of A and A∨ modulo p. Hence ρA,ℓ(Frobp) and
ρA∨,ℓ(Frobp) have the same characteristic polynomials for a dense set of Frobenius elements
Frobp ∈ GalK . Already the traces determine the semisimplifications up to isomorphism, by
the Brauer–Nesbitt theorem. □

Proposition 4.3.2. The following statements hold.

(a) The subgroup G ⩽ GL4(F2) of elements preserving (up to scaling) the unique rank 1
degenerate symplectic form is a solvable group of order 576 and exponent 12 isomor-
phic to C4

2 ⋊ S2
3 as a group.

(b) Of the 128 conjugacy classes of subgroups H ⩽ G, there are 78 for which the natural
inclusion H ↪→ G ⩽ GL4(F2) is not equivalent to its (twisted) contragredient. Of
these, 52 have the property that the image in GL4(F2) of the twisted contragredient is
not even a conjugate subgroup.

Proof. This follows from a direct calculation with matrix groups, which was performed in
Magma; see the code accompanying this paper. □
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The list of groups from Proposition 4.3.2(b) is already quite interesting: the smallest group
has size 4, the largest is G itself!

We conclude with a few final remarks.
First, Bruin [Bru17] has exhibited algorithms to work with finite flat group schemes; using

these methods, we could exhibit specific instances of our construction (including the Galois
action). In the same vein, although our abelian surfaces are not principally polarized, so
cannot arise as Jacobians of genus 2 curves, they may still be obtained as the Prym variety
attached to a cover of curves. It would be interesting to see this explicitly, for example in
the case ℓ = 2 [HSS21].

Second, abelian varieties with real multiplication over fields with nontrivial narrow class
group also give potential examples of abelian varieties without principal polarizations which
could be used as input into our method. The underlying parameter space is now a Hilbert
modular variety which may be disconnected—only one component generically corresponds
to those with a principal polarization.

Finally, given that our construction is limited to ℓ ⩽ 7, one may wonder when it is even
possible to construct explicit families of abelian varieties of dimension g with a polarization
of degree d > 1. For fixed dimension g over a fixed number field K, the possible degrees
d are conjecturally bounded: see Rémond [Rém18, Théorème 1.1(1)], which deduces this
finiteness from Coleman’s conjecture on endomorphism algebras using Zarhin’s trick.
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