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Abstract. We note a mathematical error in the article “On the paramodularity of typical
abelian surfaces” [Algebra Number Theory 13 (2019), no. 5, 1145–1195]; we correct it using
a result of Serre, which he proves in an appendix. Serre’s result extends his work on the
reduction of G-invariant bilinear forms modulo primes to the case of G-covariant forms.

This note gives errata for the article On the paramodularity of typical abelian surfaces
[BPPTVY]. In the appendix, Serre proves a result of independent interest, generalizing his
previous results [S] to the covariant case (see the introduction below).

(1) Definition 2.1.2: should be “if the values tr ρ(Frobp) belong to a computable subring”
(error pointed out by Minhyong Kim). In general, tr ρ may take other values in Z`

for arbitrary elements σ ∈ GalF,S, but all that is accessed are the values tr ρ(Frobp).
(2) In §4.2, the group GSp+

4 (R) was only defined implicitly. Explicitly,

GSp+
4 (R) := {M ∈ GL4(R) : MTJM = µJ for some µ ∈ R>0}.

(3) In §5, we worked seemingly interchangeably with GSp4(F2) and Sp4(F2), but we
neglected to note that these groups are equal GSp4(F2) = Sp4(F2) (any similitude
factor belongs to F×2 so is necessarily trivial).

(4) We are grateful to J.-P. Serre for pointing out an error in our paper and providing a
correction. In the proof of our Lemma 4.3.6, we mistakenly applied a result of Serre [S,
Theorem 5.1.4]: to transform a covariant bilinear form (having nontrivial similitude
character) into an invariant bilinear form, we modified the involution σ 7→ σ−1 to
σ 7→ σ∗ := ε(σ)σ−1. However, this map σ 7→ σ∗ is no longer an involution! To correct
this error, Serre has extended his result to the case of covariant bilinear forms, so
our appeal to his result is now direct (Theorem 1 below); and he has allowed us to
include it in the following appendix.

(5) (5.3.2): 2e should be 2k.
(6) The reference [53] (Jean-Pierre Serre, Résumé des cours de 1984–1985, Annuaire du

Collège de France 1985, 85–90) is more conveniently found at:

Jean-Pierre Serre, Oeuvres/Collected papers IV (1985–1998), Springer Collected
Works in Math., Springer, Heidelberg, 2000, no. 135, 27–32.

Date: November 5, 2020.
1



Appendix: Reduction of G-covariant bilinear forms, by J.-P. Serre

Introduction. This note is intended as a complement to [S] where reductions of G-invariant
bilinear forms modulo primes were studied. Indeed, in most applications to `-adic represen-
tations the natural bilinear forms are not G-invariant; they are only covariant with respect
to a character of the group G. The simplest example of this is the Q`-Tate module V` of an
abelian variety A over a field F of characteristic 6= `: a polarization of A defines a nondegen-
erate alternating form B on V`, which is covariant under the action of the absolute Galois
group ΓF = Gal(Fs/F ), namely:

B(gx, gy) = χ`(g)B(x, y) for every g ∈ ΓF , x, y ∈ V`,

where χ` is the `-cyclotomic character.
We shall see that the results of [S] extend to the covariant case, with practically the same

proofs.

1. The setting. It is almost the same as that of [S]. Namely:
G is a group,
K is a field with a discrete valuation,
R is the ring of integers of K,
π is a uniformizer of K,
k = R/πR is the residue field,
ε : G→ R× is a homomorphism,
V is a finite dimension K-vector space on which G acts, in such a way that there exists

an R-lattice of V which is G-stable (“bounded action”),
Vk is the k-vector space obtained by the semisimplification of the k[G]-module L/πL,

where L is a G-stable lattice of V ; up to isomorphism, it is independent from the choice of
L,
B is a symmetric (resp. alternating) nondegenerate K-bilinear form on V , which is ε-

covariant under the action of G, i.e.

(1.1) B(gx, gy) = ε(g)B(x, y) for g ∈ G, x, y ∈ V .

2. Statement of the theorems. The main theorem is the analogue of Theorem A of [S].
Namely:

Theorem 1. There exists a nondegenerate symmetric (resp. alternating) k-bilinear form on
Vk such that

(1.2) b(gx, gy) = ε(g)b(x, y) for g ∈ G, x, y ∈ Vk.

As in [S], the proof will use the following complement to a classical theorem of Brauer and
Nesbitt:

Theorem 2. Let E be a finite dimensional k[G]-module endowed with a nondegenerate sym-
metric (resp. alternating) k-bilinear form b having property (1.2). Then, the semisimplifica-
tion Ess of E has a k-bilinear form with the same properties as b.
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3. Proof of theorem 2. Use induction on dimE. Assume E 6= 0 and choose a minimal
nonzero G-submodule S of E. Let H ⊂ E be the orthogonal subspace of S with respect to
b. Since S is minimal, there are two possibilities:

a) H ∩ S = 0, i.e. the restriction of b to S is nondegenerate. In that case, we have
Ess = S ⊕Hss and we apply the induction hypothesis to H.

b) H ∩ S = S, i.e. S is totally isotropic for b. We have
Ess = (S ⊕ E/H)⊕ (H/S)ss.

The induction hypothesis applies to (H/S)ss. As for the first factor S ⊕E/H, one defines
a bilinear form b1(x, y) on it by the following rule: if x, y both belong to S, or to E/H, then
b1(x, y) = 0; if x ∈ S and y ∈ E/H, then b1(x, y) = b(x, y′) where y′ is any representative
of y in E; if x ∈ E/H and y ∈ S, then b1(x, y) = b1(y, x) in the symmetric case and
b1(x, y) = −b1(y, x) in the alternating case. It is clear that the form b1 has the required
properties.

4. Proof of Theorem 1. The first step ([S, Theorem 5.2.1]) is to show the existence of a
lattice L in V , which is G-stable, and almost self-dual, i.e. πL′ ⊂ L ⊂ L′, where L′ is the dual
of L (note that formula (1.1) implies that the dual of a G-stable lattice is G-stable). This is
done by choosing a G-stable lattice M , and defining L as the “lower middle” m−(M,M ′) of
M and its dual M ′ :
m−(M,M ′) = smallest lattice containing πnM ∩ π−nM ′ for every n ∈ Z.

It is proved in [S, Theorem 3.1.1] that m−(M,M ′) is an almost self-dual lattice.

The second step is to define a bilinear form b on the k-vector space E = L/πL′ ⊕ L′/L
by using the reduction mod π of B on L/πL′, and of πB on L′/L. It is clear that b is
nondegenerate, ε-covariant, and symmetric (resp. alternating) if B is. By Theorem 2, the
semisimplification Ess of E has a bilinear form with the required properties. Since Ess is
isomorphic to Vk, this proves Theorem 1.
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