MIDTERM EXAM MATH 115: NUMBER THEORY

Answer each question completely, and give sufficient justification and proof. Write neatly and in complete sentences!

Name	
Student ID	

Problem 1	$/ 10$
Problem 2	$/ 10$
Problem 3	$/ 15$
Problem 4	$/ 10$
Problem 5 (Bonus)	$/ 5$
Total Score	$/ 45$
Midterm Grade	

[^0]Problem 1.
(a) Compute $g=\operatorname{gcd}(2004,99)$.
(b) For g above, find integers $x, y \in \mathbb{Z}$ such that

$$
2004 x+99 y=g .
$$

Problem 2. Let $a, b \in \mathbb{Z}_{>1}$ satisfy $a^{3}=b^{2}$. Show that there exists a $d \in \mathbb{Z}$ such that $a=d^{2}$ and $b=d^{3}$.

Problem 3.

(a) Find a solution $x \in \mathbb{Z} / 27 \mathbb{Z}$ to the congruence

$$
x^{2}-7 x \equiv 6 \quad(\bmod 27) .
$$

(b) How many distinct solutions $x \in \mathbb{Z} / 243 \mathbb{Z}$ are there to the congruence

$$
x^{2}-7 x \equiv 6 \quad(\bmod 243) ?
$$

Problem 4. What is the smallest prime divisor of $n=365^{2004}+94$?

Problem 5 (Bonus). Let $\alpha=\arctan (7 / 2)$. Show that $\sin (\alpha)$ is irrational.

[^0]: Date: July 15, 2004.

