MIDTERM EXAM SOLUTIONS MATH 115: NUMBER THEORY

Problem 1. We compute

$$
\begin{aligned}
2004 & =20 \cdot 99+24 \\
99 & =4 \cdot 24+3 \\
24 & =3 \cdot 8+0
\end{aligned}
$$

so $\operatorname{gcd}(2004,99)=3$.
For (b), we work backwards:

$$
3=99-4 \cdot 24=99-4(2004-20 \cdot 99)=-4 \cdot 2004+81 \cdot 99
$$

Problem 2. By unique factorization, we may write

$$
a=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}, \quad b=p_{1}^{f_{1}} \ldots p_{r}^{f_{r}}
$$

where $e_{i}, f_{i} \geq 0$ are nonnegative integers and the p_{i} are primes. We know that

$$
p_{1}^{3 e_{1}} \ldots p_{r}^{3 e_{r}}=a^{3}=b^{2}=p_{1}^{2 f_{1}} \ldots p_{r}^{2 f_{r}}
$$

so again by unique factorization, we know that $3 e_{i}=2 f_{i}$ for all i.
Since $2 \mid\left(2 f_{i}\right)$ we know $2 \mid\left(3 e_{i}\right)$ so since $\operatorname{gcd}(2,3)=1$ (or since 2 is prime and $2 \nmid 3$), we know $2 \mid e_{i}$. Let $e_{i}=2 c_{i}$, and let $d=p_{1}^{c_{1}} \ldots p_{r}^{c_{r}}$. Then clearly $d^{2}=a$. Moreover, $3 e_{i}=6 c_{i}=2 f_{i}$ so $3 c_{i}=f_{i}$. Therefore

$$
d^{3}=p_{1}^{3 c_{1}} \ldots p_{r}^{3 c_{r}}=p_{1}^{f_{1}} \ldots p_{r}^{f_{r}}=b
$$

as well.
Here is a second proof: like in homework, since $a^{3}=b^{2}$ we know $a^{3} \mid b^{2}$ hence $a \mid b$, so $b / a=d \in \mathbb{Z}$ is an integer. Already $d^{3}=b^{3} / a^{3}=b^{3} / b^{2}=b$ and $d^{2}=b^{2} / a^{2}=a^{3} / a^{2}=a$.
Problem 3. We first find a solution to

$$
x^{2}-7 x-6 \equiv 0 \quad(\bmod 3)
$$

i.e.

$$
x^{2}-x \equiv 0 \quad(\bmod 3)
$$

This has the solutions $x \equiv 0,1(\bmod 3)$.
Start with $r_{0}=0$ and use Hensel's lemma (Newton's method). Let $f(x)=$ $x^{2}-7 x-6$, so then $f^{\prime}(x)=2 x-7$. Then

$$
f^{\prime}(0)=-7 \equiv-1 \not \equiv 0 \quad(\bmod 3)
$$

so there exists a unique lift of this solution modulo 3^{3} (indeed, to any power 3^{i}). We find

$$
f^{\prime}\left(r_{0}\right)^{-1} \equiv(-1)^{-1} \equiv-1 \quad(\bmod 3)
$$

so

$$
r_{1}=r_{0}-f\left(r_{0}\right)\left(f^{\prime}\left(r_{0}\right) \bmod 3\right)^{-1}=0+(-6) \equiv 3 \quad(\bmod 9)
$$

[^0]and similarly
$$
r_{2}=3+(-18) \equiv 12 \quad(\bmod 27)
$$

We check that indeed $12^{2}-7(12)-6 \equiv 0(\bmod 27)$. The other solution $x \equiv 1$ $(\bmod 3)$ lifts to $x \equiv 22(\bmod 27)$.

For part (b), we note that since $f^{\prime}(0), f^{\prime}(1) \not \equiv 0(\bmod 3)$, by Hensel's lemma we can lift these solutions modulo 3 to a unique solution modulo $3^{5}=243$, so there are exactly two solutions.
Problem 4. Since 365 is odd and 94 is even, n is odd so $2 \nmid n$.
We find that $365 \equiv 2(\bmod 3)$ and $94 \equiv 1(\bmod 3)$, so

$$
n \equiv 2^{2004}+1 \quad(\bmod 3)
$$

Now $2^{2}=4 \equiv 1(\bmod 3)$, so

$$
n \equiv 2^{2 \cdot 1002}+1 \equiv 1+1 \not \equiv 0 \quad \bmod 3
$$

so $3 \nmid n$.
Since $5 \mid 365$ but $5 \nmid 94$, we see $5 \nmid n$.
Since $365 \equiv 1(\bmod 7)$ we have

$$
n \equiv 1^{2004}+94 \equiv 1+3 \not \equiv 0 \quad(\bmod 7)
$$

so $7 \nmid n$.
Finally, $365 \equiv 2(\bmod 11)$. Since $\operatorname{gcd}(2,11)=1$, by Fermat's little theorem, we have $2^{10} \equiv 1(\bmod 11)$. Hence

$$
n \equiv 2^{2000+4}+6 \equiv 1 \cdot 16+6=22 \equiv 0 \quad(\bmod 11)
$$

so $11 \mid n$ and 11 is the smallest prime divisor.
Problem 5 (Bonus). We draw a right triangle with interior angle α : the statement $\arctan (7 / 2)=\alpha$ says that the opposite side to the angle α has length 7 and the adjacent side has length 2. By the Pythagorean theorem, this implies that the hypotenuse has length $\sqrt{7^{2}+2^{2}}=\sqrt{53}$, hence $\beta=\sin (\alpha)=7 / \sqrt{53}=(7 / 53) \sqrt{53}$.

First note that $\sqrt{53}$ is irrational. There are many possible proofs of this fact, one goes as follows: if $\sqrt{53}=a / b$, with $\operatorname{gcd}(a, b)=1$, then $53 b^{2}=a^{2}$, so

$$
\operatorname{ord}_{53}\left(53 b^{2}\right)=1+2 \operatorname{ord}_{53}(b)=2 \operatorname{ord}_{53}(a)
$$

a contradiction since an integer cannot both be even and odd. But this also shows that β is irrational, since if $(7 / 53) \sqrt{53}=c / d$ then $\sqrt{53}=(53 c) /(7 d) \in \mathbb{Q}$, a contradiction.

[^0]: Date: July 15, 2004.

