MIDTERM EXAM REVIEW MATH 115: NUMBER THEORY

Problem 1. Show that the set $S \subset \mathbb{R}$ of positive irrational numbers is not wellordered.

Problem 2. Find a solution $x \in \mathbb{Z} / 65 \mathbb{Z}$ to

$$
x^{2}+1 \equiv 0 \quad(\bmod 65) .
$$

How many distinct solutions $x \in \mathbb{Z} / 65 \mathbb{Z}$ are there to this congruence?

Problem 3. Show that if p, q are distinct primes, then

$$
p^{q-1}+q^{p-1} \equiv 1 \quad(\bmod p q)
$$

Problem 4. An integer x is randomly chosen between 100 and 1000. Estimate the probability that x is prime. [Hint: $\log (10) \approx 2.5$.]

Problem 5. For which integers n is it true that $n-2$ divides $2 n^{2}-1$?

Problem 6. Find a solution $x \in \mathbb{Z}$ to the congruence

$$
x^{2}+1 \equiv 0 \quad\left(\bmod 101^{2}\right)
$$

[Hint: 101 is prime.]

