MIDTERM EXAM REVIEW MATH 115: NUMBER THEORY

Problem 1. Show that the set $S \subset \mathbb{R}$ of positive irrational numbers is not well-ordered.

Problem 2. Find a solution $x \in \mathbb{Z}/65\mathbb{Z}$ to $x^2 + 1 \equiv 0$ (a)

$$^2 + 1 \equiv 0 \pmod{65}.$$

How many distinct solutions $x \in \mathbb{Z}/65\mathbb{Z}$ are there to this congruence?

Problem 3. Show that if p,q are distinct primes, then $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.

Problem 4. An integer x is randomly chosen between 100 and 1000. Estimate the probability that x is prime. [*Hint:* $\log(10) \approx 2.5$.]

Problem 5. For which integers n is it true that n - 2 divides $2n^2 - 1$?

Problem 6. Find a solution $x \in \mathbb{Z}$ to the congruence $x^2 + 1 \equiv 0 \pmod{101^2}$.

[Hint: 101 is prime.]