MIDTERM EXAM REVIEW SOLUTIONS MATH 115: NUMBER THEORY

Problem 1. There are many possible solutions to this question. To show that S is not well-ordered, we need to show that there is a subset which does not have a least element; it is certainly enough to show that the set S does not have a least element, or what will also suffice, that there exists a decreasing sequence of elements from S.

We consider the elements $1 / \sqrt{p}$ for p a prime. By Euclid's theorem, there are infinitely many primes, so the sequence $1 / \sqrt{p_{n}}$ is infinite and strictly decreasing. To conclude, we need to show that $1 / \sqrt{p}$ is irrational. Suppose $1 / \sqrt{p}=a / b$ where $a, b \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=1$. Then $p a^{2}=b^{2}$, so $p \mid b^{2}$ and thus since p is prime, $p \mid b$. Let $b=p b^{\prime}$, so then $p a^{2}=\left(p b^{\prime}\right)^{2}=p^{2}\left(b^{\prime}\right)^{2}$, hence $a^{2}=p\left(b^{\prime}\right)^{2}$, thus $p \mid a^{2}$ so $p \mid a$. This is a contradiction, since $\operatorname{gcd}(a, b)=1$.

Problem 2. To find a solution to a congruence modulo $65=5 \cdot 13$, we first solve the congruence modulo 5 and modulo 13. Indeed, the congruence

$$
x^{2}+1 \equiv 0 \quad(\bmod 5)
$$

has only the solutions $x \equiv \pm 2 \equiv 2,3(\bmod 5)$, and

$$
x^{2}+1 \equiv 0 \quad(\bmod 13)
$$

has only the solutions $x \equiv \pm 5 \equiv 5,8(\bmod 13)$. Now by the Chinese Remainder Theorem, combining each pair of solutions modulo 5 and 13 gives a solution modulo 65 , so there are a total of $2 \cdot 2=4$ solutions modulo 65 .

A quick application of the CRT gives $x \equiv \pm 8, \pm 18 \equiv 8,18,47,57(\bmod 65)$ as the 4 solutions, but any one of them will do.

Problem 3. We note first that $\operatorname{gcd}(p, q)=1$ since p, q are distinct primes. Therefore by Fermat's little theorem,

$$
p^{q-1} \equiv 1 \quad(\bmod q)
$$

hence also

$$
q^{p-1}+p^{q-1} \equiv 1 \quad(\bmod q)
$$

since $q \equiv 0(\bmod q)$. Similarly,

$$
p^{q-1}+q^{p-1} \equiv 1 \quad(\bmod p)
$$

Therefore

$$
p, q \mid\left(p^{q-1}+q^{p-1}-1\right)
$$

and so since $\operatorname{gcd}(p, q)=1$, we have

$$
p q \mid\left(p^{q-1}+q^{p-1}-1\right)
$$

hence $p^{q-1}+q^{p-1} \equiv 1(\bmod p q)$.

Problem 4. Recall that $\pi(x)=\#\{1 \leq a \leq x: a$ is prime $\}$ counts the number of primes up to a real number $x \in \mathbb{R}_{>0}$, and that

$$
\pi(x) \sim \frac{x}{\log x}
$$

Therefore we can estimate

$$
\pi(x) \approx \frac{x}{\log x}
$$

hence

$$
\pi(1000) \approx \frac{1000}{\log 10^{3}}=\frac{1000}{3 \log 10} \approx \frac{1000}{7.5} \approx 133
$$

and

$$
\pi(100) \approx \frac{10^{2}}{2 \log 10} \approx 20
$$

Therefore the number of primes between 1000 and 100 is

$$
\pi(1000)-\pi(100) \approx 133-20=113
$$

Therefore the probability that such a number is prime is $\approx 113 / 900$.
Problem 5. Since $(n-2) \mid\left(2 n^{2}-1\right)$, we have $\operatorname{gcd}\left(n-2,2 n^{2}-1\right)=n-2$. But since $\operatorname{gcd}(a, c) \mid \operatorname{gcd}(a b, c)$ for all integers a, b, c by unique factorization, we have $n-2=\operatorname{gcd}\left(n-2,2 n^{2}-1\right) \mid \operatorname{gcd}\left(2(n-2)(n+2), 2 n^{2}-1\right)=\operatorname{gcd}\left(2 n^{2}-8,2 n^{2}-1\right)$. Now using the fact that the greatest common divisor only depends on linear combinations, we have by subtracting that

$$
\operatorname{gcd}\left(2 n^{2}-8,2 n^{2}-1\right)=\operatorname{gcd}\left(-7,2 n^{2}-1\right) \mid 7
$$

so $(n-2) \mid 7$, therefore $n-2= \pm 1, \pm 7$, which gives $n=-5,1,3,9$, and indeed, each of these checks out.

Alternatively, one can use long division to show that $\left(2 n^{2}-1\right) /(n-2)=2 n+$ $4+7 /(n-2)$, which is an integer if and only if $(n-2) \mid 7$, as before.
Problem 6. We easily see that $x \equiv 10(\bmod 101)$ is a solution. We now wish to apply Hensel's lemma. We check that

$$
f^{\prime}(10)=2(10)=20 \not \equiv 0 \quad\left(\bmod 101^{2}\right)
$$

so Newton's method applies. We next want to compute $20^{-1}(\bmod 101)$, and since

$$
20(5) \equiv-1 \quad(\bmod 101)
$$

we see that $20^{-1} \equiv-5(\bmod 101)$. Therefore by Newton's method,

$$
r_{1}=r_{0}-f\left(r_{0}\right)(-5)=10+5\left(10^{2}+1\right)=515 \quad\left(\bmod 101^{2}\right)
$$

is a solution modulo 101^{2}.

