MATH 115: ELEMENTARY NUMBER THEORY HOMEWORKS \#3-4

JOHN VOIGHT

Homework \#3 (Due July 12):

- §4.2: 1(a)-(c), 6,10
- §4.3: 4(a)-(c), 12, 14, 15, 16;
4.3A: Let $f(x) \in \mathbb{Z}[x]$ be a polynomial with integral coefficients. For $m \in \mathbb{Z}_{>1}$, let $\# X(\mathbb{Z} / m \mathbb{Z})$ denote the number of solutions in $\mathbb{Z} / m \mathbb{Z}$ of the congruence

$$
f(x) \equiv 0 \quad(\bmod m)
$$

(a) Prove that if $m=m_{1} m_{2}$, where $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then

$$
\# X(\mathbb{Z} / m \mathbb{Z})=\# X\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \cdot \# X\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)
$$

(b) What can you conclude if $\operatorname{gcd}\left(m_{1}, m_{2}\right)>1$?

- §4.4: 1, 2, 10;
4.4A: Let $k \in \mathbb{Z}_{>0}$.
(a) Show that the product of any k consecutive integers is divisible by k !. [Hint: Use a binomial coefficient.]
(b) Let $f(x) \in \mathbb{Z}[x]$ be a polynomial with integer coefficients, let $r \in \mathbb{Z}$. Let $f^{(k)}(x)$ denote the k th derivative of $f(x)$. Show that each coefficient of $f^{(k)}(x)$ is divisible by $k!$. Conclude that for any $r \in \mathbb{Z}, f^{(k)}(r) / k!$ is an integer.
- $\S 6.1: 3,12,14,16,25,33$
- $\S 6.3: 2,5,9$

Homework \#4 (Due July 19):

- §2.1: 1, 17, 28, 29
- $\S 5.1: 1(\mathrm{c}), 2(\mathrm{c}), 3(\mathrm{~b}), 4(\mathrm{~d}), 11,12$
- §6.2: 1, 3, 18

